Volume and 3 Dimensional Objects Review Sheet 1. A regular pyramid has a square base with an edge length of 14 and an altitude of 24. Find its volume. 2. Find the volume of a cone with a height of 12 in and a diameter of 8 in rounded to the nearest hundredth. 4. Find the volume of the shapes below: 3. 4 cm. 5 cm. 8 cm. | V= Slub | | |---------------|----| | V= 3/41/16/13 | 7) | | 15=144 cm3 | | to the regiest Leath Find the volume of the following objects: 5. rumsphere V=3(3111)3) V=3(3114,15)3) V=149V=13714.15740.] 183- 1149- =333.7 6. V=lun V=12120145) 1510800) 1=74(10)1(12) V= 7068. 7. A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism? - 1) triangle - 3) hexagon - 2) trapezoid - 4) rectangle vertical 8. The cross section of a regular pyramid contains the <u>altitude</u> of the pyramid. The shape of this cross section is a - 1) circle - 2) square - (3) triangle - 4) rectangle 9. In right triangle MTH shown below, $m\angle H = 90^{\circ}$, HT = 8, and HM = 5. Determine and state, to the *nearest tenth*, the volume of the three-dimensional solid formed by rotating $\triangle MTH$ continuously around \overline{MH} . V= 371/87(5) V= 335.1 10. In rectangle GEOM, GE = 4 and EO = 10. Find the volume of the three-dimensional object create by continuously rotating rectangle GEOM about EO. in term of T 11. The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm. Find, in centimeters, the height of the pyramid if the volume is 288 cm³. - 1)6 - 2)8 | $V=\frac{1}{3}lwh$ | a equation sol | verima the | |--------------------|----------------|------------| | 788 = 3(8)(| al 18=h | | | 382= 10h | /) | | | -16 Ho | | | 12. Find the radius of a sphere with a volume of 576π cubic inches. Find the answer to the nearest tenth of an inch. - 1) 4.9 - 2) 15.1 - 3) 9.2 13. A brick that weighs 1824 grams has dimensions that measure 4 cm by 3 cm by 8 cm. To the nearest tenth, what is the density of the brick? $$d = \frac{m}{d}$$ $$d = \frac{18249}{ab \cdot em^3}$$ $$d = \frac{199(m^3)}{ab \cdot em^3}$$ $$V=100h$$ $V=4131(8)$ $V=960m^3$ 14. A metal sphere that has a mass of 8024 grams has a diameter of 10 cm. To the nearest tenth, what is the density of the sphere? d= 8024 g d= 8024 g 523... Cm³ d=15.3 g/cm³ 15. Cylindrical bricks are needed to fill a hole in a homeowner's backyard. Each brick is to have a diameter of 4 cm and a height of 2 cm. The weight of the concrete that the brick is going to be made from is 2.1 ounces per cubic centimeter. If the concrete costs \$.14 per ounce, how much would it cost to purchase four bricks? Round your answer to the nearest cent. 16. Walter wants to make candles in the shape of a cone for his new candle business. Each candle will have a height of 8 inches and a diameter of 3 inches. Walter goes to a hobby store to buy the wax for his candles. The wax costs \$0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? V=18... in3 V=371(1.5)2(8) 18... 1/3 . 52 0/2 . 100 V=371(1.5)2(8) 17. A sandbox in the shape of a rectangular prism has a length of 43 inches and a width of 30 inches. Jack uses bags of sand to fill the sandbox to a depth of 9 inches. Each bag of sand has a volume of 0.5 cubic foot. What is the minimum number of bags of sand that must be purchased to fill the sandbox? Convert first to 43 3012 = 3ft 912 = 3ft $V=\frac{43}{5}\sqrt{5}\sqrt{3}$ 6.71875 ft. 1 bag V=6.71875 ft. 0.5 ft. = 13.4375 a convert to A 18. A concrete footing is a cylinder that is placed in the ground to support a building structure. The cylinder is 4 feet tall and 12 inches in diameter. A contractor is installing 10 footings. If a bag of concrete mix makes $\frac{2}{3}$ of a cubic foot of concrete, determine and state the minimum number of bags of concrete mix needed to make all 10 footings. 12m 1P 19. In right triangle RST below, altitude \overline{SV} is drawn to hypotenuse \overline{RT} . If RV = 4.1 and TV = 10.2, what is the length of \overline{ST} , to the nearest tenth? 20. In right triangle PRT, $m\angle P = 90^{\circ}$, altitude \overline{PQ} is drawn to hypotenuse \overline{RT} , RT = 17, and PR = 15. Determine and state, to the *nearest tenth*, the length of \overline{RQ} . Sque: Check orientation! Sque: different Contra a Single line reflection Single line reflection 21. Which of the following sequences of rigid motions would map ΔGIA onto ΔJET ? Must be Single point reflection through (0.5,0.5) followed by a translation 11 right and 1 down 2) reflection over the y-axis followed by a translation right 1 and down 1 3 rotation of 90 degrees clockwise centered at the origin followed by a translation right 1 and up 1 Φ reflection over x=1 followed by a reflection over the x-axis 22. Identify which sequence of transformations could map pentagon ABCDE onto pentagon A"B"C"D"E", as shown below. dilation followed by a rotation translation followed by a rotation line reflection followed by a translation line reflection followed by a line reflection double line ## Find the area of the following triangles: Ac= 12011) Ac= 132 ATI = 5(11)(3) ATI = 16.5 At2= 2(9)(7) At2= 31.5 Ar3= \frac{1}{5}/4/(12) Ar3=24