Name:

Common Core Algebra I Regents Review Packet!

Mr. Schlansky

Multiple Choice Strategy with Variables

If variables in the problems and answers:
$10 \mathrm{STO} \rightarrow \mathrm{X}, 15 \mathrm{STO} \rightarrow \mathrm{Y}$
Type in original problem, $2^{\text {nd }}$ Math (Test), =, type in each solution. 1 is equivalent, 0 is not equivalent. Make sure to try all four choices.

1. Which expression represents $\frac{\left(2 x^{3}\right)\left(8 x^{5}\right)}{4 x^{6}}$ in simplest form?
1) x^{2}
2) x^{9}
3) $4 x^{2}$
4) $4 x^{9}$
2. Factored, the expression $16 x^{2}-25 y^{2}$ is equivalent to
1) $(4 x-5 y)(4 x+5 y)$
2) $(4 x-5 y)(4 x-5 y)$
3) $(8 x-5 y)(8 x+5 y)$
4) $(8 x-5 y)(8 x-5 y)$
3. Factored completely, the expression $2 x^{2}+10 x-12$ is equivalent to
1) $2(x-6)(x+1)$
2) $2(x+6)(x-1)$
3) $2(x+2)(x+3)$
4) $2(x-2)(x-3)$
4. The expression $9 x^{2}-100$ is equivalent to
1) $(9 x-10)(x+10)$
2) $(3 x-10)(3 x+10)$
3) $(3 x-100)(3 x-1)$
4) $(9 x-100)(x+1)$
5. What is $\frac{6}{5 x}-\frac{2}{3 x}$ in simplest form?
1) $\frac{8}{15 x^{2}}$
2) $\frac{8}{15 x}$
3) $\frac{4}{15 x}$
4) $\frac{4}{2 x}$
6. Which expression represents $\frac{12 x^{3}-6 x^{2}+2 x}{2 x}$ in simplest form?
1) $6 x^{2}-3 x$
2) $10 x^{2}-4 x$
3) $6 x^{2}-3 x+1$
4) $10 x^{2}-4 x+1$
7. The sum of $4 x^{3}+6 x^{2}+2 x-3$ and $3 x^{3}+3 x^{2}-5 x-5$ is
1) $7 x^{3}+3 x^{2}-3 x-8$
2) $7 x^{3}+3 x^{2}+7 x+2$
3) $7 x^{3}+9 x^{2}-3 x-8$
4) $7 x^{6}+9 x^{4}-3 x^{2}-8$
8. What is the sum of $\frac{-x+7}{2 x+4}$ and $\frac{2 x+5}{2 x+4}$?
1) $\frac{x+12}{2 x+4}$
2) $\frac{3 x+12}{2 x+4}$
3) $\frac{x+12}{4 x+8}$
4) $\frac{3 x+12}{4 x+8}$
9. Factored completely, the expression $3 x^{2}-3 x-18$ is equivalent to
1) $3\left(x^{2}-x-6\right)$
2) $3(x-3)(x+2)$
3) $(3 x-9)(x+2)$
4) $(3 x+6)(x-3)$
10. Four expressions are shown below.

$$
\begin{array}{ll}
\text { I } & 2\left(2 x^{2}-2 x-60\right) \\
\text { II } & 4\left(x^{2}-x-30\right) \\
\text { III } & 4(x+6)(x-5) \\
\text { IV } & 4 x(x-1)-120
\end{array}
$$

The expression $4 x^{2}-4 x-120$ is equivalent to

1) I and II, only 3) I, II, and IV
2) II and IV, only 4) II, III, and IV
11. Which trinomial is equivalent to $3(x-2)^{2}-2(x-1)$?
1) $3 x^{2}-2 x-10$
2) $3 x^{2}-2 x-14$
3) $3 x^{2}-14 x+10$
4) $3 x^{2}-14 x+14$
12. When factored completely, $x^{3}-13 x^{2}-30 x$ is
1) $x(x+3)(x-10)$
2) $x(x-3)(x-10)$
3) $x(x+2)(x-15)$
4) $x(x-2)(x+15)$
13. The expression $x^{4}-16$ is equivalent to
1) $\left(x^{2}+8\right)\left(x^{2}-8\right)$
2) $\left(x^{2}-8\right)\left(x^{2}-8\right)$
3) $\left(x^{2}+4\right)\left(x^{2}-4\right)$
4) $\left(x^{2}-4\right)\left(x^{2}-4\right)$
14. The expression $3\left(x^{2}-1\right)-\left(x^{2}-7 x+10\right)$ is equivalent to
1) $2 x^{2}-7 x+7$
2) $2 x^{2}+7 x-13$
3) $2 x^{2}-7 x+9$
4) $2 x^{2}+7 x-11$

Multiple Choice Strategy with Equations

Store each potential answer (\qquad STO $\rightarrow \mathrm{X}$)
Type in equation
1 is correct, 0 is incorrect
*Check all potential answers

1. Which value of p is the solution of $5 p-1=2 p+20$?
1) $\frac{19}{7}$
2) $\frac{19}{3}$
3) 3
4) 7
2. What is the value of x in the equation $2(x-4)=4(2 x+1)$?
1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$
3. Solve for x : $15 x-3(3 x+4)=6$
1) 1
2) $-\frac{1}{2}$
3) 3
4) $\frac{1}{3}$
4. If $3(x-2)=2 x+6$, the value of x is
(1) 0
(3) 12
(2) 5
(4) 20
5. Which value of x is a solution of $\frac{5}{x}=\frac{x+13}{6}$?
1) -2
2) -3
3) -10
4) -15
6. What is the solution of $\frac{k+4}{2}=\frac{k+9}{3}$?
1) 1
2) 5
3) 6
4) 14
7. What is the value of x in the equation $\frac{2}{x}-3=\frac{26}{x}$?
1) -8
2) $-\frac{1}{8}$
3) $\frac{1}{8}$
4) 8
8. Which value of x is the solution of the equation $\frac{2 x}{3}+\frac{x}{6}=5$?
1) 6
2) 10
3) 15
4) 30
9. Solve for $x: \frac{3}{5}(x+2)=x-4$
1) 8
2) 13
3) 15
4) 23
10. Which value of x is the solution of $\frac{x}{3}+\frac{x+1}{2}=x$?
1) 1
2) -1
3) 3
4) -3
11. Which value of x is the solution of $\frac{2 x-3}{x-4}=\frac{2}{3}$?
1) $-\frac{1}{4}$
2) $\frac{1}{4}$
3) -4
4) 4
12. Which value of x satisfies the equation $\frac{7}{3}\left(x+\frac{9}{28}\right)=20$?
1) 8.25
2) 8.89
3) 19.25
4) 44.92

Equivalent Expressions

Use multiple choice strategy! See if the two expressions are equal.

1. A computer application generates a sequence of musical notes using the function $f(n)=\sigma(16)^{n}$, where n is the number of the note in the sequence and $f(n)$ is the note frequency in hertz. Which function will generate the same note sequence as $f(n)$?
1) $g(n)=12(2)^{4 n}$
2) $h(n)=6(2)^{4 n}$
3) $p(n)=12(4)^{2 n}$
4) $k(n)=6(8)^{2 n}$
2. The function $f(x)=3 x^{2}+12 x+11$ can be written in vertex form as
1) $f(x)=(3 x+6)^{2}-25$
2) $f(x)=3(x+6)^{2}-25$
3) $f(x)=3(x+2)^{2}-1$
4) $f(x)=3(x+2)^{2}+7$
3. Mario's $\$ 15,000$ car depreciates in value at a rate of 19% per year. The value, V, after t years can be modeled by the function $V=15,000(0.81)^{t}$. Which function is equivalent to the original function?
1) $V=15,000(0.9)^{9 t}$
2)

$V=15,000(0.9)^{\frac{t}{9}}$
2) $V=15,000(0.9)^{2 t}$
4)
$V=15,000(0.9)^{\frac{t}{2}}$
4. Nora inherited a savings account that was started by her grandmother 25 years ago. This scenario is modeled by the function $A(t)=5000(1.013)^{t+25}$, where $A(t)$ represents the value of the account, in dollars, t years after the inheritance. Which function below is equivalent to $A(t)$?

1) $A(t)=5000\left[\left(1.013^{t}\right)\right]^{25}$
2) $A(t)=5000\left[(1.013)^{t}+(1.013)^{25}\right]$
3) $A(t)=(5000)^{t}(1.013)^{25}$
4) $A(t)=5000(1.013)^{t}(1.013)^{25}$
5. The number of bacteria grown in a lab can be modeled by $P(t)=300 \cdot 2^{4 t}$, where t is the number of hours. Which expression is equivalent to $P(t)$?
1) $300 \cdot 8^{t}$
2) $300 \cdot 16^{t}$
3) $300^{t} \cdot 2^{4}$
4) $300^{2 t} \cdot 2^{2 t}$
6. The growth of a certain organism can be modeled by $C(t)=10(1.029)^{24 t}$, where $C(t)$ is the total number of cells after t hours. Which function is approximately equivalent to $C(t)$?
1) $C(t)=240(.083)^{24 t}$
2) $C(t)=10(.083)^{t}$
3) $C(t)=10(1.986)^{t}$
4) $C(t)=240(1.986)^{\frac{t}{24}}$

Evaluating Expressions

Substitute the value in for x.

1. If $f(x)=\frac{1}{2} x^{2}-\left(\frac{1}{4} x+3\right)$, what is the value of $f(8)$?
1) 11
2) 17
3) 27
4) 33
2. If $k(x)=2 x^{2}-3 \sqrt{x}$, then $k(9)$ is
1) 315
2) 307
3) 159
4) 153
3. The graph of $f(x)$ is shown below. What is the value of $f(-3)$?
1) 6
2) 2
3) -2
4) -4

4. Lynn, Jude, and Anne were given the function $f(x)=-2 x^{2}+32$, and they were asked to find $f(3)$. Lynn's answer was 14 , Jude's answer was 4 , and Anne's answer was ± 4. Who is correct?
1) Lynn, only
2) Anne, only
3) Jude, only
4) Both Lynn and Jude
5. Faith wants to use the formula $C(f)=\frac{5}{9}(f-32)$ to convert degrees Fahrenheit, f, to degrees Celsius, $C(f)$. If Faith calculated $C(68)$, what would her result be?
1) 20° Celsius
2) 20° Fahrenheit
3) 154° Celsius
4) 154° Fahrenheit
6. If $f(n)=(n-1)^{2}+3 n$, which statement is true?
1) $f(3)=-2$
2) $f(-2)=3$
3) $f(-2)=-15$
4) $f(-15)=-2$
7. Which value of x results in equal outputs for $j(x)=3 x-2$ and $b(x)=|x+2|$?
1) -2
2) 2
3) $\frac{2}{3}$
4) 4
8. As x increases beyond 25 , which function will have the largest value?
1) $f(x)=1.5^{x}$
2) $g(x)=1.5 x+3$
3) $h(x)=1.5 x^{2}$
4) $k(x)=1.5 x^{3}+1.5 x^{2}$
9. What is the largest integer, x, for which the value of $f(x)=5 x^{4}+30 x^{2}+9$ will be greater than the value of $g(x)=3^{x}$?
1) 7
2) 8
3) 9
4) 10
10. The function $g(x)$ is defined as $g(x)=-2 x^{2}+3 x$. The value of $g(-3)$ is
1) -27
2) -9
3) 27
4) 45
11. The functions $f(x), q(x)$, and $p(x)$ are shown below.

$$
q(x)=(x-1)^{2}-6
$$

\mathbf{x}	$\mathbf{p}(\mathbf{x})$
2	5
3	4
4	3
5	4
6	5

When the input is 4 , which functions have the same output value?

1) $f(x)$ and $q(x)$, only
2) $f(x)$ and $p(x)$, only
3) $q(x)$ and $p(x)$, only
4) $f(x), q(x)$, and $p(x)$

Number Properties	
$2(4+3)=2 \bullet 4+2 \bullet 3$	
$4 \bullet 6=6 \bullet 4$	Distributive Property
$2+7=7+2$	Commutative Property of Multiplication
$5+(2+3)=(5+2)+3$	Commutative Property of Addition
$5 \bullet(4 \bullet 3)=(5 \bullet 4) \bullet 3$	Associative Property of Addition
$4+0=4$	Associative Property of Multiplication
$7 \bullet 1=7$	Additive Identity
$5+-5=0$	Multiplicative Identity
$4 \bullet \frac{1}{4}=1$	Additive Inverse
$3 \bullet 0=0$	Multiplicative Inverse
$4\left(3 x^{2}+2\right)-9=8 x^{2}+7 \rightarrow 4\left(3 x^{2}+2\right)=8 x^{2}+16$	Addition Property of Equality
$2 x+8=4 x+4 \rightarrow 8=2 x+4$	Subtraction Property of Equality
$2 x^{2}=8 x+10 \rightarrow x^{2}=4 x+5$	Division Property of Equality
$\frac{2 x+5}{3}=5 \rightarrow 2 x+5=15$	Multiplication Property of Equality

ASSociative property has two sets of parenthesis
Commutative property has numbers commute (move)
Identity is where you start and end with the same thing
Inverse is when you end up with the identity element (Addition 0, Multiplication 1)

1. Which property is illustrated by the equation $a x+a y=a(x+y)$?
1) associative
2) distributive
3) commutative
4) identity
2. The statement $2+0=2$ is an example of the use of which property of real numbers?
1) associative
2) additive inverse
3) additive identity
4) distributive
3. Which equation illustrates the associative property?
1) $x+y+z=x+y+z$
2) $x(y+z)=x y+x z$
3) $x+y+z=z+y+x$
4) $(x+y)+z=x+(y+z)$
4. If M and A represent integers, $M+A=A+M$ is an example of which property?
(1) commutative
(3) distributive
(2) associative
(4) closure
5. Which equation illustrates the multiplicative inverse property?
1) $a \cdot 1=a$
2) $a \cdot 0=0$
3) $a\left(\frac{1}{a}\right)=1$
4) $(-a)(-a)=a^{2}$
6. A teacher asked the class to solve the equation $3(x+2)=21$. Robert wrote $3 x+6=21$ as his first step. Which property did he use?
1) associative property
2) commutative property
3) distributive property
4) zero property of addition
7. Britney is solving a quadratic equation. Her first step is shown below.

> Problem: $3 x^{2}-8-10 x=3(2 x+3)$
> Step 1: $\quad 3 x^{2}-10 x-8=6 x+9$

Which two properties did Britney use to get to step 1?
I. addition property of equality
II. commutative property of addition
III. multiplication property of equality
IV. distributive property of multiplication over addition

1) I and III
2) II and III
3) I and IV
4) II and IV
8. A part of Jennifer's work to solve the equation $2\left(6 x^{2}-3\right)=11 x^{2}-x$ is shown below.

Given: $2\left(6 x^{2}-3\right)=11 x^{2}-x$
Step 1: $12 x^{2}-6=11 x^{2}-x$
Which property justifies her first step?

1) identity property of multiplication
2) multiplication property of equality
3) commutative property of multiplication
4) distributive property of multiplication over subtraction
9. When solving the equation $12 x^{2}-7 x=6-2\left(x^{2}-1\right)$, Evan wrote $12 x^{2}-7 x=6-2 x^{2}+2$ as his first step. Which property justifies this step?
1) subtraction property of equality
2) associative property of multiplication
3) multiplication property of equality
4) distributive property of multiplication over subtraction
10. In the process of solving the equation $10 x^{2}-12 x-16 x=6$, George wrote $2\left(5 x^{2}-14 x\right)=2(3)$, followed by $5 x^{2}-14 x=3$. Which properties justify George's process?
A. addition property of equality
B. division property of equality
C. commutative property of addition
D. distributive property
1) A and C
2) A and B
3) D and C
4) D and B
11. When solving $p^{2}+5=8 p-7$, Kate wrote $p^{2}+12=8 p$. The property she used is
1) the associative property
2) the distributive property
3) the commutative property
4) the addition property of equality
12. John was given the equation $4(2 a+3)=-3(a-1)+31-11 a$ to solve. Some of the steps and their reasons have already been completed. State a property of numbers for each missing reason.
$4(2 a+3)=-3(a-1)+31-11 a \quad$ Given
$8 a+12=-3 a+3+31-11 a$
$8 a+12=34-14 a \quad$ Combining like terms
$22 a+12=34$
13. A student is in the process of solving an equation. The original equation and the first step are shown below.

> Original: $3 a+6=2-5 a+7$
> Step one: $3 a+6=2+7-5 a$

Which property did the student use for the first step? Explain why this property is correct.
14. Britney is solving a quadratic equation. Her first step is shown below.

> Problem: $\quad 3 x^{2}-8-10 x=3(2 x+3)$
> Step 1: $\quad 3 x^{2}-10 x-8=6 x+9$

Which two properties did Britney use to get to step 1?
I. addition property of equality
II. commutative property of addition
III. multiplication property of equality
IV. distributive property of multiplication over addition

1) I and III
2) II and III
3) I and IV
4) II and IV
15. When solving the equation $12 x^{2}-7 x=6-2\left(x^{2}-1\right)$, Evan wrote $12 x^{2}-7 x=6-2 x^{2}+2$ as his first step. Which property justifies this step?
1) subtraction property of equality
2) associative property of multiplication
3) multiplication property of equality
4) distributive property of multiplication over subtraction
16. A part of Jennifer's work to solve the equation $2\left(6 x^{2}-3\right)=11 x^{2}-x$ is shown below.

Given: $2\left(6 x^{2}-3\right)=11 x^{2}-x$
Step 1: $12 x^{2}-6=11 x^{2}-x$
Which property justifies her first step?

1) identity property of multiplication
2) multiplication property of equality
3) commutative property of multiplication
4) distributive property of multiplication over subtraction

Rational vs. Irrational

Rational	Irrational
Ends of continues with a pattern	Never ends with no pattern
Fraction	π
Perfect Square Radicals	Non Perfect Square Radicals

Addition/Subtraction: If at least one number is irrational, the result is irrational.
Multiplication/Division: If one number is irrational, the result is irrational. If both are irrational, the result can either be rational or irrational.

*If an irrational number is involved, the result is almost always irrational.

1. Which statement is not always true?
1) The product of two irrational numbers is irrational.
2) The product of two rational numbers is rational.
3) The sum of two rational numbers is rational.
4) The sum of a rational number and an irrational number is irrational.
2. Which statement is not always true?
1) The sum of two rational numbers is rational.
2) The product of two irrational numbers is rational.
3) The sum of a rational number and an irrational number is irrational.
4) The product of a nonzero rational number and an irrational number is irrational.
3. Which expression results in a rational number?
1) $\sqrt{121}-\sqrt{21}$
2) $\sqrt{25} \cdot \sqrt{50}$
3) $\sqrt{36} \div \sqrt{225}$
4) $3 \sqrt{5}+2 \sqrt{5}$
4. The product of $\sqrt{576}$ and $\sqrt{684}$ is
1) irrational because both factors are irrational
2) irrational because one factor is irrational
3) rational because both factors are
4) rational because one factor is rational rational
5. Given the following expressions:
I. $-\frac{5}{8}+\frac{3}{5}$
III. $(\sqrt{5}) \cdot(\sqrt{5})$
II. $\frac{1}{2}+\sqrt{2}$
IV. $3 \cdot(\sqrt{49})$

Which expression(s) result in an irrational number?

1) II, only
2) III, only
3) I, III, IV
4) II, III, IV
6. Which expression results in a rational number? $L=\sqrt{2}$
1) $L+M$
2) $N+P$
3) $M+N$
4) $P+L$
$M=3 \sqrt{3}$
$N=\sqrt{16}$
$p=\sqrt{9}$
7. State whether $7-\sqrt{2}$ is rational or irrational. Explain your answer.
8. Determine if the product of $3 \sqrt{2}$ and $8 \sqrt{18}$ is rational or irrational. Explain your answer.
9. Jakob is working on his math homework. He decides that the sum of the expression $\frac{1}{3}+\frac{6 \sqrt{5}}{7}$ must be rational because it is a fraction. Is Jakob correct? Explain.
10. Is the sum of $3 \sqrt{2}$ and $4 \sqrt{2}$ rational or irrational? Explain your answer.
11. Ms. Fox asked her class "Is the sum of 4.2 and $\sqrt{2}$ rational or irrational?" Patrick answered that the sum would be irrational. State whether Patrick is correct or incorrect. Justify your reasoning.
12. A teacher wrote the following set of numbers on the board:

Explain why $a+b$ is irrational, but $b+c$ is rational.
$a=\sqrt{20} \quad b=2.5 \quad c=\sqrt{225}$
13. Is the product of $\sqrt{16}$ and $\frac{4}{7}$ rational or irrational? Explain your reasoning.

Polynomial Standard Form

A polynomial in standard form has the term with the highest exponent first and is followed by terms in decreasing exponential order.
The number in front of the term with the highest exponent is called the leading coefficient

Write the following polynomials in standard form, state their degree, leading coefficient, and constant term.

1. $9 x^{3}-x^{4}+1+2 x^{6}$
2. $5 y+4-3 y^{5}$
3. An expression of the fifth degree is written with a leading coefficient of seven and a constant of six. Which expression is correctly written for these conditions?
1) $6 x^{5}+x^{4}+7$
2) $7 x^{6}-6 x^{4}+5$
3) $6 x^{7}-x^{5}+5$
4) $7 x^{5}+2 x^{2}+6$
4. Mrs. Allard asked her students to identify which of the polynomials below are in standard form and explain why.
I. $15 x^{4}-6 x+3 x^{2}-1$
II. $12 x^{3}+8 x+4$
III. $2 x^{5}+8 x^{2}+10 x$

Which student's response is correct?

1) Tyler said I and II because the coefficients are decreasing.
2) Susan said only II because all the numbers are decreasing.
3) Fred said II and III because the exponents are decreasing.
4) Alyssa said II and III because they each have three terms.
5. When multiplying polynomials for a math assignment, Pat found the product to be $-4 x+8 x^{2}-2 x^{3}+5$. He then had to state the leading coefficient of this polynomial. Pat wrote down -4 . Do you agree with Pat's answer? Explain your reasoning.
6. Mrs. Allard asked her students to identify which of the polynomials below are in standard form and explain why.
I. $15 x^{4}-6 x+3 x^{2}-1$
II. $12 x^{3}+8 x+4$
III. $2 x^{5}+8 x^{2}+10 x$

Which student's response is correct?

1) Tyler said I and II because the coefficients are decreasing.
2) Fred said II and III because the exponents are decreasing.
3) Susan said only II because all the numbers are decreasing.
4) Alyssa said II and III because they each have three terms.
7. Students were asked to write $6 x^{5}+8 x-3 x^{3}+7 x^{7}$ in standard form. Shown below are four student responses.

Anne: $7 x^{7}+6 x^{5}-3 x^{3}+8 x$
Bob: $-3 x^{3}+6 x^{5}+7 x^{7}+8 x$
Carrie: $8 x+7 x^{7}+6 x^{5}-3 x^{3}$
Dylan: $8 x-3 x^{3}+6 x^{5}+7 x^{7}$
Which student is correct?

1) Anne
2) Carrie
3) Bob
4) Dylan
8. Which polynomial has a leading coefficient of 4 and a degree of 3 ?
1) $3 x^{4}-2 x^{2}+4 x-7$
2) $4+x-4 x^{2}+5 x^{3}$
3) $4 x^{4}-3 x^{3}+2 x^{2}$
4) $2 x+x^{2}+4 x^{3}$
9. Students were asked to write an expression which had a leading coefficient of 3 and a constant term of -4 . Which response is correct?
1) $3-2 x^{3}-4 x$
2) $7 x^{3}-3 x^{5}-4$
3) $4-7 x+3 x^{3}$
4) $-4 x^{2}+3 x^{4}-4$
10. An example of a sixth-degree polynomial with a leading coefficient of seven and a constant term of four is
1) $6 x^{7}-x^{5}+2 x+4$
2) $4+x+7 x^{6}-3 x^{2}$
3) $7 x^{4}+6+x^{2}$
4) $5 x+4 x^{6}+7$
11. What is the constant term of the polynomial $4 d+6+3 d^{2}$?
1) 6
2) 2
3) 3
4) 4

Operations with Polynomials

Adding: Combine like terms
Subtracting: Distribute the negative and then combine like terms (Keep Change Change)
*Subtracting from: from comes first!
Multiplying: Box Method (Multiply to determine what's in the boxes, add to combine like terms)
Dividing: Divide every term in the numerator by the denominator
*Use Multiple Choice Strategy if Multiple Choice

1. If $A=3 x^{2}+5 x-6$ and $B=-2 x^{2}-6 x+7$, then $A-B$ equals
1) $-5 x^{2}-11 x+13$
2) $5 x^{2}+11 x-13$
3) $-5 x^{2}-x+1$
4) $5 x^{2}-x+1$
2. What is the result when $6 x^{2}-13 x+12$ is subtracted from $-3 x^{2}+6 x+7$?
1) $3 x^{2}-7 x+19$
2) $9 x^{2}-19 x+5$
3) $9 x^{2}-7 x+19$
4) $-9 x^{2}+19 x-5$
3. What is the result when $4 x^{2}-17 x+36$ is subtracted from $2 x^{2}-5 x+25$?
1) $6 x^{2}-22 x+61$
2) $2 x^{2}-12 x+11$
3) $-2 x^{2}-22 x+61$
4) $-2 x^{2}+12 x-11$
4. Which expression is equivalent to $2(3 g-4)-(8 g+3)$?
1) $-2 g-1$
2) $-2 g-5$
3) $-2 g-7$
4) $-2 g-11$
5. What is the product of $2 x+3$ and $4 x^{2}-5 x+6$?
1) $8 x^{3}-2 x^{2}+3 x+18$
2) $8 x^{3}-2 x^{2}-3 x+18$
3) $8 x^{3}+2 x^{2}-3 x+18$
4) $8 x^{3}+2 x^{2}+3 x+18$
6. The expression $3\left(x^{2}-1\right)-\left(x^{2}-7 x+10\right)$ is equivalent to
1) $2 x^{2}-7 x+7$
2) $2 x^{2}+7 x-13$
3) $2 x^{2}-7 x+9$
4) $2 x^{2}+7 x-11$
7. Express in simplest form: $\left(3 x^{2}+4 x-8\right)-\left(-2 x^{2}+4 x+2\right)$
8. Express the product of $2 x^{2}+7 x-10$ and $x+5$ in standard form.
9. Multiply $\left(2 x^{2}+3 x-2\right)(x-2)$
10. Write the expression $5 x+4 x^{2}(2 x+7)-6 x^{2}-9 x$ as a polynomial in standard form.
11. Given that $f(x)=2 x+1$, find $g(x)$ if $g(x)=2[f(x)]^{2}-1$.

Solving Linear Equations and Inequalities

1) Get rid of fractions (Multiply by the LCD)
2) Get rid of parenthesis (Distribute)
3) Combine like terms on each side
4) Bring all variables to one side
5) Isolate variable (add/subtract first, divide last)
*When dividing/multiplying by a negative in an inequality, switch the inequality!
*Be careful which direction the inequality sign is facing when you write your solution
1. What is the value of x in the equation $\frac{x-2}{3}+\frac{1}{6}=\frac{5}{6}$?
1) 4
2) 6
3) 8
4) 11
2. The solution to $-2(1-4 x)=3 x+8$ is
1) $\frac{6}{11}$
2) 2
3) $-\frac{10}{7}$
4) -2
3. An equation is given below.

$$
4(x-7)=0.3(x+2)+2.11
$$

The solution to the equation is

1) 8.3
2) 8.7
3) 3
4) -3
4. Which value of x satisfies the equation $\frac{5}{6}\left(\frac{3}{8}-x\right)=16$?
1) -19.575
2) -18.825
3) -16.3125
4) -15.6875
5. What is the solution to the equation $\frac{3}{5}\left(x+\frac{4}{3}\right)=1.04$?
1) $3.0 \overline{6}$
2) 0.4
3) $-0.4 \overline{8}$
4) $-0.709 \overline{3}$
6. What is the solution to the inequality $2+\frac{4}{9} x \geq 4+x$?
1) $x \leq-\frac{18}{5}$
2) $x \geq-\frac{18}{5}$
3) $x \leq \frac{54}{5}$
4) $x \geq \frac{54}{5}$
7. The inequality $7-\frac{2}{3} x<x-8$ is equivalent to
1) $x>9$
2) $x>-\frac{3}{5}$
3) $x<9$
4) $x<-\frac{3}{5}$
8. When $3 x+2 \leq 5(x-4)$ is solved for x, the solution is
1) $x \leq 3$
2) $x \geq 3$
3) $x \leq-11$
4) $x \geq 11$
9. What is the solution to $2 h+8>3 h-6$
1) $h<14$
2) $h<\frac{14}{5}$
3) $h>14$
4) $h>\frac{14}{5}$
10. The solution to $4 p+2<2(p+5)$ is
1) $p>-6$
2) $p<-6$
3) $p>4$
4) $p<4$
11. Which value would be a solution for x in the inequality $47-4 x<7$?
1) -13
2) -10
3) 10
4) 11
12. Given the set $\{x \mid-2 \leq x \leq 2$, where x is an integer $\}$, what is the solution of $-2(x-5)<10$?
1) $0,1,2$
2) 1,2
3) $-2,-1,0$
4) $-2,-1$
13. Solve the equation below algebraically for the exact value of x.
$6-\frac{2}{3}(x+5)=4 x$
14. Solve the inequality below:
$1.8-0.4 y \geq 2.2-2 y$
15. Solve algebraically for $x: 3600+1.02 x<2000+1.04 x$
16. Solve the inequality below to determine and state the smallest possible value for x in the solution set.
$3(x+3) \leq 5 x-3$
17. Determine the smallest integer that makes $-3 x+7-5 x<15$ true.
18. Given $2 x+a x-7>-12$, determine the largest integer value of a when $x=-1$.
19. Solve for x algebraically: $7 x-3(4 x-8) \leq 6 x+12-9 x$

If x is a number in the interval $[4,8]$, state all integers that satisfy the given inequality. Explain how you determined these values.

Literal Equations

Follow same steps as equation solving. Don't combine unlike terms.
When isolating, add or subtract first, divide last

1. If $a b x-5=0$, what is x in terms of a and b ?
1) $x=\frac{5}{a b}$
2) $x=-\frac{5}{a b}$
3) $x=5-a b$
4) $x=a b-5$
2. The formula for electrical power, P, is $P=I^{2} R$, where I is current and R is resistance. The formula for I in terms of P and R is
1) $I=\left(\frac{P}{R}\right)^{2}$
2) $I=\sqrt{\frac{P}{R}}$
3) $I=(P-R)^{2}$
4) $I=\sqrt{P-R}$
3. Boyle's Law involves the pressure and volume of gas in a container. It can be represented by the formula $P_{1} V_{1}=P_{2} V_{2}$. When the formula is solved for P_{2}, the result is
1) $P_{1} V_{1} V_{2}$
2) $\frac{V_{2}}{P_{1} V_{1}}$
3) $\frac{P_{1} V_{1}}{V_{2}}$
4) $\frac{P_{1} V_{2}}{V_{1}}$
4. The formula for the sum of the degree measures of the interior angles of a polygon is $S=180(n-2)$. Solve for n, the number of sides of the polygon, in terms of S.
5. The formula for converting degrees Fahrenheit (F) to degrees Kelvin (K) is:

$$
K=\frac{5}{9}(F+459.67)
$$

Solve for F, in terms of K.
6. The equation for the volume of a cylinder is $V=\pi r^{2} h$. The positive value of r, in terms of h and V, is

1) $r=\sqrt{\frac{V}{\pi h}}$
2) $r=\sqrt{V \pi h}$
3) $r=2 V \pi h$
4) $r=\frac{V}{2 \pi}$
7. The formula $F_{g}=\frac{G M_{1} M_{2}}{r^{2}}$ calculates the gravitational force between two objects where G is the gravitational constant, M_{1} is the mass of one object, M_{2} is the mass of the other object, and r is the distance between them. Solve for the positive value of r in terms of F_{g} , G, M_{1}, and M_{2}.
8. If $a x+3=7-b x$, what is x expressed in terms of a and b ?
1) $\frac{4}{a b}$
2) $-\frac{4}{a b}$
3) $\frac{4}{a+b}$
4) $-\frac{4}{a+b}$
9. Using the formula for the volume of a cone, express r in terms of V, h, and π.
10. The formula for the area of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Express b_{1} in terms of A, h, and b_{2}. The area of a trapezoid is 60 square feet, its height is 6 ft , and one base is 12 ft . Find the number of feet in the other base.

In Terms of \mathbf{x}

1) List the things you are comparing
2) Call the last thing x
3) Express everything else in terms of x
4) Create an equation to represent the situation and solve
5) Substitute x into your original expressions and answer the question
1. Jeff and Danielle collect basketball cards. Jeff has 4 less than twice as many basketball cards than Danielle has. If they have a total of 44 basketball cards, which equation could be used to determine the number of basketball cards, d, that Danielle has?
1) $d+(d-4)=44$
2) $(2 d-4)+d=44$
3) $2 d-4=44$
4) $d+(4-2 d)=44$
2. The Yankees won 6 less than twice as many games as they lost in a season. If there are 162 games in a season, which equation can be used to determine how many games the Yankees lost, x ?
1) $2 x-6=162$
2) $x+(2 x-6)=162$
3) $(6+2 x)+x=162$
4) $(6-2 x)+x=162$
3. Nicci's sister is 7 years less than twice Nicci's age, a. The sum of Nicci's age and her sister's age is 41 . Which equation represents this relationship?
1) $a+(7-2 a)=41$
2) $a+(2 a-7)=41$
3) $2 a-7=41$
4) $a=2 a-7$
4. Nadia has some change at the bottom of her purse. She has nine more dimes than quarters. If the value of her change is $\$ 3.35$, which equation can be used to determine the number of quarters, x , she has in her purse?
1) $.25 x+.10 x=3.35$
2) $.10 x+.25(x+9)=3.35$
3) $x+x+9=3.35$
4). $10(x+9)+.25 x=3.35$
5. John has four more nickels than dimes in his pocket, for a total of $\$ 1.25$. Which equation could be used to determine the number of dimes, x, in his pocket?
1) $0.10(x+4)+0.05(x)=\$ 1.25$
2) $0.05(x+4)+0.10(x)=\$ 1.25$
3) $0.10(4 x)+0.05(x)=\$ 1.25$
4) $0.05(4 x)+0.10(x)=\$ 1.25$
6. Joe has dimes and nickels in his piggy bank totaling $\$ 1.45$. The number of nickels he has is 5 more than twice the number of dimes, d. Which equation could be used to find the number of dimes he has?
1) $0.10 d+0.05(2 d+5)=1.45$
2) $0.10(2 d+5)+0.05 d=1.45$
3) $d+(2 d+5)=1.45$
4) $(d-5)+2 d=1.45$
7. Jamie is 5 years older than her sister Amy. If the sum of their ages is 19 , how old is Jamie?
8. Ben has four more than twice as many CDs as Jake. If they have a total of 31 CDs, how many CDs does Jake have?
9. A varsity basketball team has 3 less than four times as many senior as sophomores and 5 more juniors than sophomores. If there are 20 players on the team, how many are sophomores?
10. At midtown high school, the sophomore class has 30 more students than the freshman class. The junior class has 20 less students than the freshman class, and the senior class has 50 less than twice the students in the freshman class. If there are 180 students in the schools, how many students are in the sophomore class?
11. A store sells grapes for $\$ 1.99$ per pound, strawberries for $\$ 2.50$ per pound, and pineapples for $\$ 2.99$ each. Jonathan has $\$ 25$ to buy fruit. He plans to buy 2 more pounds of strawberries than grapes. He also plans to buy 2 pineapples. If x represents the number of pounds of grapes, write an inequality in one variable that models this scenario. Determine algebraically the maximum number of whole pounds of grapes he can buy.
12. Hannah went to the school store to buy supplies and spent $\$ 16$. She bought four more pencils than pens and two fewer erasers than pens. Pens cost $\$ 1.25$ each, pencils cost $\$ 0.55$ each, and erasers cost $\$ 0.75$ each. If x represents the number of pens Hannah bought, write an equation in terms of x that can be used to find how many of each item she bought. Use your equation to determine algebraically how many pens Hannah bought.
13. Franklin has a jar full of nickels and dimes in a jar that he is bringing to the bank. He has one less than twice as many nickels are dimes. If his coins have a value of $\$ 5.95$, how many nickels does he have?
14. Dave has four more quarters than dimes. He has six less nickels than dimes. If he has a total of $\$ 4.30$ in his pocket, how many dimes does he have?

Modeling Linear Functions
$y=$ Per/Eachx + one time fee
$y=$ slopex $+y$-intercept
Slope $=$ per/each, y intercept $=$ one time fee/starting amount
Per or each (slope) goes in front of x, the one time fee or one time starting amount (y intercept) goes at the end. x represents what the per is for. For example, if something costs $\$ 5$ per hour, x is hours.
Same: Set the two equations equal to each other
Context for Linear Functions: The slope is the y unit per x unit. The y intercept is the starting amount y units or the amount when x is 0 .

1. The cost of airing a commercial on television is modeled by the function $C(n)=110 n+900$, where n is the number of times the commercial is aired. Based on this model, which statement is true?
1) The commercial costs $\$ 0$ to produce and $\$ 110$ per airing up to $\$ 900$.
2) The commercial costs $\$ 110$ to produce and $\$ 900$ each time it is aired.
3) The commercial costs $\$ 900$ to produce and $\$ 110$ each time it is aired.
4) The commercial costs $\$ 1010$ to produce and can air an unlimited number of times.
2. The cost of airing a commercial on television is modeled by the function $C(n)=110 n+900$, where n is the number of times the commercial is aired. Based on this model, which statement is true?
1) The commercial costs $\$ 0$ to produce and $\$ 110$ per airing up to $\$ 900$.
2) The commercial costs $\$ 110$ to produce and $\$ 900$ each time it is aired.
3) The commercial costs $\$ 900$ to produce and $\$ 110$ each time it is aired.
4) The commercial costs $\$ 1010$ to produce and can air an unlimited number of times.
3. A company that manufactures radios first pays a start-up cost, and then spends a certain amount of money to manufacture each radio. If the cost of manufacturing r radios is given by the function $c(r)=5.25 r+125$, then the value 5.25 best represents
1) the start-up cost
2) the profit earned from the sale of one radio
3) the amount spent to manufacture each radio
4) the average number of radios manufactured
4. A satellite television company charges a one-time installation fee and a monthly service charge. The total cost is modeled by the function $y=40+90 x$. Which statement represents the meaning of each part of the function?
1) y is the total cost, x is the number of months of service, $\$ 90$ is the installation fee, and $\$ 40$ is the service charge per month.
2) y is the total cost, x is the number of months of service, $\$ 40$ is the installation fee, and $\$ 90$ is the service charge per month.
3) x is the total cost, y is the number of months of service, $\$ 40$ is the installation fee, and $\$ 90$ is the service charge per month.
4) x is the total cost, y is the number of months of service, $\$ 90$ is the installation fee, and $\$ 40$ is the service charge per month.
5. Each day, a local dog shelter spends an average of $\$ 2.40$ on food per dog. The manager estimates the shelter's daily expenses, assuming there is at least one dog in the shelter, using the function $E(x)=30+2.40 x$. Which statements regarding the function $E(x)$ are correct?
I. $\quad x$ represents the number of dogs at the shelter per day.
II. x represents the number of volunteers at the shelter per day.
III. 30 represents the shelter's total expenses per day.
IV. 30 represents the shelter's nonfood expenses per day.
1) I and III
2) II and III
3) I and IV
4) II and IV
6. A plumber has a set fee for a house call and charges by the hour for repairs. The total cost of her services can be modeled by $c(t)=125 t+95$. Which statements about this function are true?
I. A house call fee costs $\$ 95$.
II. The plumber charges $\$ 125$ per hour.
III. The number of hours the job takes is represented by t.
1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III
7. The amount Mike gets paid weekly can be represented by the expression $2.50 a+290$, where a is the number of cell phone accessories he sells that week. What is the constant term in this expression and what does it represent?
1) 2.50 a , the amount he is guaranteed to be paid each week
2) 290 , the amount he is guaranteed to be paid each week
3) $2.50 a$, the amount he earns when he sells a accessories
4) 290 , the amount he earns when he sells a accessories
8. A car leaves Albany, NY, and travels west toward Buffalo, NY. The equation $D=280-59 t$ can be used to represent the distance, D, from Buffalo after t hours. In this equation, the 59 represents the
1) car's distance from Albany
2) distance between Buffalo and Albany
3) speed of the car
4) number of hours driving
9. The table below shows the height in feet, $h(t)$, of a hot-air balloon and the number of minutes, t, the balloon is in the air.

Time (min)	2	5	7	10	12
Height (ft)	64	168	222	318	369

The function $h(t)=30.5 t+8.7$ can be used to model this data table. Explain the meaning of the slope in the context of the problem. Explain the meaning of the y-intercept in the context of the problem.
10. The cost of belonging to a gym can be modeled by $C(m)=50 m+79.50$, where $C(m)$ is the total cost for m months of membership. State the meaning of the slope and y-intercept of this function with respect to the costs associated with the gym membership.
11. Omar has a piece of rope. He ties a knot in the rope and measures the new length of the rope. He then repeats this process several times. Some of the data collected are listed in the table below.

Number of Knots	4	5	6	7	8
Length of Rope (cm)	64	58	49	39	31

The equation $y=-8.5 x+99.2$ represents this situation. Explain what the y-intercept means in the context of the problem. Explain what the slope means in the context of the problem.
12. Tanya is making homemade greeting cards. The data table below represents the amount she spends in dollars, $f(x)$, in terms of the number of cards she makes, x. The data can be represented by the equation $f(x)=.75 x+4.5$. Explain what the slope and y intercept of $f(x)$ mean in the given context.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
4	7.50
6	9
9	11.25
10	12

13. During a recent snowstorm in Red Hook, NY, Jaime noted that there were 4 inches of snow on the ground at 3:00 p.m., and there were 6 inches of snow on the ground at 7:00 p.m. The situation can be represented by the equation $f(t)=\frac{1}{2} t$ where $f(t)$ represents the amount of snow after t hours. What does the slope of the line represent in the context of this problem?
14. A cell phone company charges $\$ 60.00$ a month for up to 1 gigabyte of data. The cost of additional data is $\$ 0.05$ per megabyte. If d represents the number of additional megabytes used and c represents the total charges at the end of the month, which linear equation can be used to determine a user's monthly bill?
1) $c=60-0.05 d$
2) $c=60.05 d$
3) $c=60 d-0.05$
4) $c=60+0.05 d$
15. At Benny's Cafe, a mixed-greens salad costs $\$ 5.75$. Additional toppings can be added for $\$ 0.75$ each. Which function could be used to determine the cost, $c(s)$, in dollars, of a salad with s additional toppings?
1) $c(s)=5.75 s+0.75$
2) $c(s)=0.75 s+5.75$
3) $c(s)=5.00 s+0.75$
4) $c(s)=0.75 s+5.00$
16. A gardener is planting two types of trees:

Type A is 36 inches tall and grows at a rate of 15 inches per year.
Type B is 48 inches tall and grows at a rate of 10 inches per year.
Algebraically determine exactly how many years it will take for these trees to be the same height.
17. A local business was looking to hire a landscaper to work on their property. They narrowed their choices to two companies. Flourish Landscaping Company charges a flat rate of $\$ 120$ per hour. Green Thumb Landscapers charges $\$ 70$ per hour plus a $\$ 1600$ equipment fee. Write a system of equations representing how much each company charges. Determine and state the number of hours that must be worked for the cost of each company to be the same. Justify your answer.
18. Ian is borrowing $\$ 1000$ from his parents to buy a notebook computer. He plans to pay them back at the rate of $\$ 60$ per month. Ken is borrowing $\$ 600$ from his parents to purchase a snowboard. He plans to pay his parents back at the rate of $\$ 20$ per month. Write an equation that can be used to determine after how many months the boys will owe the same amount. Determine algebraically and state in how many months the two boys will owe the same amount. State the amount they will owe at this time.
19. Next weekend Marnie wants to attend either carnival A or carnival B. Carnival A charges $\$ 6$ for admission and an additional $\$ 1.50$ per ride. Carnival B charges $\$ 2.50$ for admission and an additional $\$ 2$ per ride.
a) In function notation, write $A(x)$ to represent the total cost of attending carnival A and going on x rides. In function notation, write $B(x)$ to represent the total cost of attending carnival B and going on x rides.
b) Determine the number of rides Marnie can go on such that the total cost of attending each carnival is the same.
20. Central High School had five members on their swim team in 2010. Over the next several years, the team increased by an average of 10 members per year. The same school had 35 members in their chorus in 2010. The chorus saw an increase of 5 members per year. Write a system of equations to model this situation, where x represents the number of years since 2010 . After how many weeks will the swim team and the chorus have the same number of members?
21. Aidan and his sister Ella are having a race. Aidan runs at a rate of 10 feet per second. Ella runs at a rate of 6 feet per second. Since Ella is younger, Aidan is letting her begin 30 feet ahead of the starting line. Let y represent the distance from the starting line and x represent the time elapsed, in seconds. Write an equation to model the distance Aidan traveled. Write an equation to model the distance Ella traveled. Exactly how many seconds does it take Aidan to catch up to Ella? Justify your answer.

Systems of Equations with Elimination

1) Choose a variable to cancel and multiply each equation by the other's coefficient *multiply by negative if they are the same sign
2) Add equations together
3) Solve equation for one variable
4) Substitute answer in to either equation to find the second variable
*You can find an equivalent system by multiplying either equation by any constant
*For word problems, the first equation is just $x+y=$ for an amount. The second equation is usually a money equation.
*For money, the second equation is $.01 p, .05 n, .10 d$, or $.25 q$
1. $\mathrm{c}-2 \mathrm{~d}=14$
$3 c+9 d=27$

$$
\text { 2. } \quad 3 a-b=301 . \quad a+3 b=11
$$

$$
\text { 3. } \quad \begin{array}{ll}
2 x+y=3 \\
-x+3 y=-12
\end{array}
$$

4. $2 x+3 y=12$
$5 x-y=13$
5. $\quad \begin{aligned} & -3 x+4 y=12 \\ & 2 x+y=-8\end{aligned}$
6. $2 x+4 y=-4$
$3 x+5 y=-3$
7. Which system of equations will yield the same solution as the system below?

$$
\begin{aligned}
& x-y=3 \\
& 2 x-3 y=-1 \\
& \text { 3) } 2 x-2 y=6 \\
& 2 x-3 y=-1 \\
& \text { 4) } 3 x+3 y=9 \\
& 2 x-3 y=-1
\end{aligned}
$$

1) $-2 x-2 y=-6$
$2 x-3 y=-1$
2) $-2 x+2 y=3$
$2 x-3 y=-1$
8. Which system of equations does not have the same solution as the system below?

$$
\begin{gathered}
4 x+3 y=10 \\
-6 x-5 y=-16
\end{gathered}
$$

1) $-12 x-9 y=-30$

$$
12 x+10 y=32
$$

2) $20 x+15 y=50$

$$
-18 x-15 y=-48
$$

3) $24 x+18 y=60$

$$
-24 x-20 y=-64
$$

4) $40 x+30 y=100$
$36 x+30 y=-96$
9. A system of equations is given below.

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x+y=4
\end{aligned}
$$

Which system of equations does not have the same solution?

$$
\begin{gathered}
\text { 1) } 3 x+6 y=15 \\
2 x+y=4 \\
\text { 2) } 4 x+8 y=20 \\
2 x+y=4
\end{gathered}
$$

$$
\text { 3) } x+2 y=5
$$

$$
6 x+3 y=12
$$

$$
\text { 4) } \begin{aligned}
x+2 y & =5 \\
4 x+2 y & =12
\end{aligned}
$$

10. Which system of equations has the same solution as the system below?
1) $2 x+2 y=16$

$$
6 x-2 y=4
$$

$$
\begin{gathered}
2 x+2 y=16 \\
3 x-y=4
\end{gathered}
$$

2) $2 x+2 y=16$ $6 x-2 y=8$
3) $x+y=16$

$$
3 x-y=4
$$

4) $6 x+6 y=48$ $6 x+2 y=8$
11. Which system of equations would have the same solution as the system:
$x+y=5$
$3 x+2 y=10$
1) $\begin{aligned} & 3 x+2 y=5 \\ & x+y=10\end{aligned}$
2) $\begin{aligned} & -3 x-3 y=-15 \\ & 3 x+2 y=10\end{aligned}$
3) $\begin{aligned} & -3 x-3 y=5 \\ & 3 x+2 y=10\end{aligned}$
4) $\begin{aligned} & 2 x+2 y=5 \\ & 3 x+2 y=10\end{aligned}$
12. Lizzy has 30 coins that total $\$ 4.80$. All of her coins are dimes, D, and quarters, Q. Which system of equations models this situation?
1) $D+Q=4.80$
$10 D+.25 Q=30$
2) $D+Q=30$
$.25 D+.10 Q=4.80$
3) $D+Q=30$
$.10 D+.25 Q=4.80$
4) $D+Q=4.80$
$.25 D+.10 Q=30$
13. Alicia purchased H half-gallons of ice cream for $\$ 3.50$ each and P packages of ice cream cones for $\$ 2.50$ each. She purchased 14 items and spent $\$ 43$. Which system of equations could be used to determine how many of each item Alicia purchased?
1) $3.50 H+2.50 P=43$
2) $3.50 H+2.50 P=14$
$H+P=43$
3) $3.50 P+2.50 H=43$
$P+H=14$
4) $3.50 P+2.50 H=14$
$P+H=43$
14. The Celluloid Cinema sold 150 tickets to a movie. Some of these were child tickets and the rest were adult tickets. A child ticket cost $\$ 7.75$ and an adult ticket cost $\$ 10.25$. If the cinema sold $\$ 1470$ worth of tickets, which system of equations could be used to determine how many adult tickets, a, and how many child tickets, c, were sold?
1) $a+c=150$
$10.25 a+7.75 c=1470$
2) $a+c=1470$
$10.25 a+7.75 c=150$

$$
\begin{aligned}
& \text { 3) } a+c=150 \\
& 7.75 a+10.25 c=1470 \\
& \text { 4) } a+c=1470 \\
& 7.75 a+10.25 c=150
\end{aligned}
$$

15. During its first week of business, a market sold a total of 108 apples and oranges. The second week, five times the number of apples and three times the number of oranges were sold. A total of 452 apples and oranges were sold during the second week. Determine how many apples and how many oranges were sold the first week.
16. Dylan has a bank that sorts coins as they are dropped into it. A panel on the front displays the total number of coins inside as well as the total value of these coins. The panel shows 90 coins with a value of $\$ 17.55$ inside of the bank. If Dylan only collects dimes and quarters, write a system of equations in two variables or an equation in one variable that could be used to model this situation. Using your equation or system of equations, algebraically determine the number of quarters Dylan has in his bank.
17. Mo's farm stand sold a total of 165 pounds of apples and peaches. She sold apples for $\$ 1.75$ per pound and peaches for $\$ 2.50$ per pound. If she made $\$ 337.50$, how many pounds of peaches did she sell?
18. Last week, a candle store received $\$ 355.60$ for selling 20 candles. Small candles sell for $\$ 10.98$ and large candles sell for $\$ 27.98$. How many large candles did the store sell?
19. The math department needs to buy new textbooks and laptops for the computer science classroom. The textbooks cost $\$ 116.00$ each, and the laptops cost $\$ 439.00$ each. If the math department has $\$ 6500$ to spend and purchases 30 textbooks, how many laptops can they buy?
20. Byron has 72 coins in his piggy bank. The piggy bank contains only dimes and quarters. If he has $\$ 14.70$ in his piggy bank, how many dimes does he have in his piggy bank?
21. An animal shelter spends $\$ 2.35$ per day to care for each cat and $\$ 5.50$ per day to care for each dog. Pat noticed that the shelter spent $\$ 89.50$ caring for cats and dogs on Wednesday. Write an equation to represent the possible numbers of cats and dogs that could have been at the shelter on Wednesday. Pat said that there might have been 8 cats and 14 dogs at the shelter on Wednesday. Are Pat's numbers possible? Use your equation to justify your answer. Later, Pat found a record showing that there were a total of 22 cats and dogs at the shelter on Wednesday. How many cats were at the shelter on Wednesday?
22. For a class picnic, two teachers went to the same store to purchase drinks. One teacher purchased 18 juice boxes and 32 bottles of water, and spent $\$ 19.92$. The other teacher purchased 14 juice boxes and 26 bottles of water, and spent $\$ 15.76$. Write a system of equations to represent the costs of a juice box, j, and a bottle of water, w. Kara said that the juice boxes might have cost 52 cents each and that the bottles of water might have cost 33 cents each. Use your system of equations to justify that Kara's prices are not possible. Solve your system of equations to determine the actual cost, in dollars, of each juice box and each bottle of water.
23. Two friends went to a restaurant and ordered one plain pizza and two sodas. Their bill totaled $\$ 15.95$. Later that day, five friends went to the same restaurant. They ordered three plain pizzas and each person had one soda. Their bill totaled $\$ 45.90$. Write and solve a system of equations to determine the price of one plain pizza. [Only an algebraic solution can receive full credit.]
24. A recreation center ordered a total of 15 tricycles and bicycles from a sporting goods store. The number of wheels for all the tricycles and bicycles totaled 38. Write a linear system of equations that models this scenario, where t represents the number of tricycles and b represents the number of bicycles ordered. Based on your graph of this scenario, could the recreation center have ordered 10 tricycles? Explain your reasoning.

Systems of Inequalities

$<$: shade below dashed line \leq : shade below solid line
$>$: shade above dashed line $\quad \geq$: shade above solid line
The solution set is the region that both graphs are shaded. Mark with an S.
*For word problems, the first inequality is just $x+y$ for an amount. The second inequality is usually a money inequality.

1. Graph the following systems of inequalities on the set of axes below:

Based upon your graph, explain why $(6,1)$ is a solution to this system and why $(-6,7)$ is not a solution to this system.
$2 y \geq 3 x-16$
$y+2 x>-5$

2. On the set of axes below, graph the following system of inequalities:

Determine if the point $(1,2)$ is in the solution set. Explain your answer.
$2 y+3 x \leq 14$
$4 x-y<2$

3. Solve the following system of inequalities graphically on the grid below and label the solution S.

Is the point $(3,7)$ in the solution set? Explain your answer.
$3 x+4 y>20$
$x<3 y-18$

4. The sum of two numbers, x and y, is more than 8 . When you double x and add it to y, the sum is less than 14. Graph the inequalities that represent this scenario on the set of axes below. Kai says that the point $(6,2)$ is a solution to this system. Determine if he is correct and explain your reasoning.

5. Jordan works for a landscape company during his summer vacation. He is paid $\$ 12$ per hour for mowing lawns and $\$ 14$ per hour for planting gardens. He can work a maximum of 40 hours per week, and would like to earn at least $\$ 250$ this week. If m represents the number of hours mowing lawns and g represents the number of hours planting gardens, which system of inequalities could be used to represent the given conditions?

1) $m+g \leq 40$
$12 m+14 g \geq 250$
2) $m+g \geq 40$
$12 m+14 g \leq 250$
3) $m+g \leq 40$
$12 m+14 g \leq 250$
4) $m+g \geq 40$
$12 m+14 g \geq 250$
6. Edith babysits for x hours a week after school at a job that pays $\$ 4$ an hour. She has accepted a job that pays $\$ 8$ an hour as a library assistant working y hours a week. She will work both jobs. She is able to work no more than 15 hours a week, due to school commitments. Edith wants to earn at least $\$ 80$ a week, working a combination of both jobs. Write a system of inequalities that can be used to represent the situation. Graph these inequalities on the set of axes below.

Determine and state one combination of hours that will allow Edith to earn at least $\$ 80$ per week while working no more than 15 hours.
7. An on-line electronics store must sell at least $\$ 2500$ worth of printers and computers per day. Each printer costs $\$ 50$ and each computer costs $\$ 500$. The store can ship a maximum of 15 items per day. On the set of axes below, graph a system of inequalities that models these constraints. Determine a combination of printers and computers that would allow the electronics store to meet all of the constraints. Explain how you obtained your answer.

Number of Printers
8. Myranda received a movie gift card for $\$ 100$ to her local theater. Matinee tickets cost $\$ 7.50$ each and evening tickets cost $\$ 12.50$ each. If x represents the number of matinee tickets she could purchase, and y represents the number of evening tickets she could purchase, write an inequality that represents all the possible ways Myranda could spend her gift card on movies at the theater. On the set of axes below, graph this inequality.
What is the maximum number of matinee tickets Myranda could purchase with her gift card? Explain your answer.

9. The Reel Good Cinema is conducting a mathematical study. In its theater, there are 200 seats. Adult tickets cost $\$ 12.50$ and child tickets cost $\$ 6.25$. The cinema's goal is to sell at least $\$ 1500$ worth of tickets for the theater. Write a system of linear inequalities that can be used to find the possible combinations of adult tickets, x, and child tickets, y, that would satisfy the cinema's goal. Graph the solution to this system of inequalities on the set of axes below. Label the solution with an S. Marta claims that selling 30 adult tickets and 80 child tickets will result in meeting the cinema's goal. Explain whether she is correct or incorrect, based on the graph drawn.

Systems of Inequalities

The solution to a system of inequalities is the region where they are both shaded. The solid line is included, the dashed line is not included.

1. Which ordered pair is in the solution set of
2. Which ordered pair is in the solution set of the linear systems of inequalities graphed below?
1) $(-2,-1)$
2) $(-2,-4)$
3) $(-2,2)$
4) $(2,-2)$
 the linear system of inequalities shown in the graph below?

1)	$(1,-4)$	$3)$
2)	$(-5,3)$	4)
	$(-7,-2)$	

What is one point that lies in the solution set of the system of inequalities graphed below?
4.
3. Which ordered pair is in the solution set of the system of linear inequalities graphed below?

1) $(-4,2)$
2) $(-4,0)$
3) $(0,5)$
4) $(4,-5)$

(1) $(7,0)$
(3) $(0,7)$
(2) $(3,0)$
(4) $(-3,5)$

Modeling Exponential Functions

Exponential/ Interest/Depreciation Problems: $A=P(1 \pm r)^{t}$, where A is the current amount, P is the initial amount (y-intercept), r is the rate as a decimal (divide by 100), and t is time.
Given an exponential function: What is in front of the parenthesis is the INITIAL amount, what is inside the parenthesis is $1+$ the rate or $1-$ the rate.
Example: $\quad A=500(1.2)^{t}: 500$ is initial amount, rate is .2 or 20% growth $(1+.2)$
$A=500(0.8)^{t}: 500$ is initial amount, rate is .2 or 20% decay (1-.2)

1. Anne invested $\$ 1000$ in an account with a 1.3% annual interest rate. She made no deposits or withdrawals on the account for 2 years. If interest was compounded annually, which equation represents the balance in the account after the 2 years?
1) $A=1000(1-0.013)^{2}$
2) $A=1000(1+0.013)^{2}$
3) $A=1000(1-1.3)^{2}$
4) $A=1000(1+1.3)^{2}$
2. Dylan invested $\$ 600$ in a savings account at a 1.6% annual interest rate. He made no deposits or withdrawals on the account for 2 years. The interest was compounded annually. Find, to the nearest cent, the balance in the account after 2 years.
3. A car worth $\$ 41,235$ depreciates at a rate of 11.5% each year. Find the value of the car after 7 years to the nearest cent?
4. Sheba opened a retirement account with $\$ 36,500$. Her account grew at a rate of 7% per year compounded annually. She made no deposits or withdrawals on the account. At the end of 20 years, what was the account worth, to the nearest dollar?
5. A certain car depreciates at a rate of 15% each year. If the car was initially worth $\$ 8125$, what is the value of the car, rounded to the nearest cent, 11 years later?
6. Marilyn collects old dolls. She purchases a doll for $\$ 450$. Research shows this doll's value will increase by 2.5% each year. Write an equation that determines the value, V, of the doll t years after purchase. Assuming the doll's rate of appreciation remains the same, will the doll's value be doubled in 20 years? Justify your reasoning.
7. The function $V(t)=1350(1.017)^{t}$ represents the value $V(t)$, in dollars, of a comic book t years after its purchase. The yearly rate of appreciation of the comic book is
1) 17%
2) 1.7%
3) 1.017%
4) 0.017%
8. Milton has his money invested in a stock portfolio. The value, $v(x)$, of his portfolio can be modeled with the function $v(x)=30,000(0.78)^{x}$, where x is the number of years since he made his investment. Which statement describes the rate of change of the value of his portfolio?
1) It decreases 78% per year.
2) It decreases 22% per year.
3) It increases 78% per year.
4) It increases 22% per year.
9. The equation $A=1300(1.02)^{7}$ is being used to calculate the amount of money in a savings account. What does 1.02 represent in this equation?
1) 0.02% decay
2) 0.02% growth
3) 2% decay
4) 2% growth
10. A car's depreciated value can be represented by the function $v(t)=25500(.83)^{t}$. What was the initial value of the car and what is the depreciation rate?
11. The value, $v(t)$, of a car depreciates according to the function $v(t)=P(.85)^{t}$, where P is the purchase price of the car and t is the time, in years, since the car was purchased. State the percent that the value of the car decreases by each year. Justify your answer.
12. Some banks charge a fee on savings accounts that are left inactive for an extended period of time. The equation $y=5000(0.98)^{x}$ represents the value, y, of one account that was left inactive for a period of x years. What is the y-intercept of this equation and what does it represent?
1) 0.98 , the percent of money in the account initially
2) 0.98 , the percent of money in the account after x years
3) 5000 , the amount of money in the account initially
4) 5000, the amount of money in the account after x years
13. The number of carbon atoms in a fossil is given by the function $y=5100(0.95)^{x}$, where x represents the number of years since being discovered. What is the percent of change each year? Explain how you arrived at your answer.
14. A population of rabbits in a lab, $p(x)$, can be modeled by the function $p(x)=20(1.014)^{x}$, where x represents the number of days since the population was first counted. Explain what 20 and 1.014 represent in the context of the problem.
15. The breakdown of a sample of a chemical compound is represented by the function $p(t)=300(0.5)^{t}$, where $p(t)$ represents the number of milligrams of the substance and t represents the time, in years. In the function $p(t)$, explain what 0.5 and 300 represent.

Linear vs. Exponential

Linear	Exponential
Add/Subtract Constant Amount	Multiply/Divide Constant Amount Add/subtract increasing/decreasing amount
Per x + 1TF	AP1RT
	Percent/Rate

Linear increases/decreases by a constant amount.
Exponential increases/decreases by a constant percent!

1. One characteristic of all linear functions is that they change by
1) equal factors over equal intervals
2) unequal factors over equal intervals
3) equal differences over equal intervals
4) unequal differences over equal intervals
2. Which statement below is true about linear functions?
1) Linear functions grow by equal factors over equal intervals.
2) Linear functions grow by equal differences over equal intervals.
3) Linear functions grow by equal differences over unequal intervals.
4) Linear functions grow by unequal factors over equal intervals.
3. The table below shows the average yearly balance in a savings account where interest is compounded annually. No money is deposited or withdrawn after the initial amount is deposited.

Which type of function best models the given data?

1) linear function with a negative rate of change
2) linear function with a positive rate. of change
3) exponential decay function
4) exponential growth function

Year	Balance, in Dollars
0	380.00
10	562.49
20	832.63
30	1232.49
40	1824.39
50	2700.54

4. The number of people who attended a school's last six basketball games increased as the team neared the state sectional games. The table below shows the data. State the type of function that best fits the given data. Justify your choice of a function type.

Game	13	14	15	16	17	18
Attendance	348	435	522	609	696	783

5. The function, $t(x)$, is shown in the table below. Determine whether $t(x)$ is linear or exponential. Explain your answer.

\mathbf{x}	$\mathbf{t}(\mathbf{x})$
-3	10
-1	7.5
1	5
3	2.5
5	0

6. Caleb claims that the ordered pairs shown in the table below are from a nonlinear function. State if Caleb is correct. Explain your reasoning.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
0	2
1	4
2	8
3	16

7. The tables below show the values of four different functions for given values of x. Which table represents a linear function?
1) $f(x)$
2) $g(x)$
3) $h(x)$
4) $k(x)$

x	$f(x)$
1	12
2	19
3	26
4	33

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
1	-1
2	1
3	5
4	13

\mathbf{x}	$\mathrm{h}(\mathrm{x})$
1	9
2	12
3	17
4	24

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
1	-2
2	4
3	14
4	28

8. Which table of values represents a linear relationship?
1)

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	-3
0	-2
1	1
2	6
3	13

2)

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8

3)

\mathbf{x}	$f(\mathbf{x})$
-1	-3
0	-1
1	1
2	3
3	5

4)

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	-1
0	0
1	1
2	8
3	27

9. During physical education class, Andrew recorded the exercise times in minutes and heart rates in beats per minute (bpm) of four of his classmates. Which table best represents a linear model of exercise time and heart rate?
1)

Exercise Time (in minutes)	Heart Rate (bpm)
0	60
1	65
2	70
3	75
4	80
Student 2	

2)

Exercise Time (in minutes)	Heart Rate (bpm)
0	62
1	70
2	83
3	88
4	90

3)

Student 3	
Exercise Time (in minutes)	Heart Rate (bpm)
0	58
1	65
2	70
3	75
4	79

4)

Exercise Time (in minutes)	Heart Rate (bpm)
0	62
1	65
2	66
3	73
4	75

10. Determine and state whether the sequence $1,3,9,27, \ldots$ displays exponential behavior. Explain how you arrived at your decision.
11. Ian is saving up to buy a new baseball glove. Every month he puts $\$ 10$ into a jar. Which type of function best models the total amount of money in the jar after a given number of months?
1) linear
2) quadratic
3) exponential
4) square root
12. The highest possible grade for a book report is 100 . The teacher deducts 10 points for each day the report is late. Which kind of function describes this situation?
1) linear
2) exponential growth
3) quadratic
4) exponential decay
13. Which situation is not a linear function?
1) A gym charges a membership fee of $\$ 10.00$ down and $\$ 10.00$ per month.
2) A cab company charges $\$ 2.50$ initially and $\$ 3.00$ per mile.
3) A restaurant employee earns $\$ 12.50$ per hour.
4) A $\$ 12,000$ car depreciates 15% per year.
14. Which scenario represents exponential growth?
1) A water tank is filled at a rate of 2 gallons/minute.
2) A vine grows 6 inches every week.
3) A species of fly doubles its population every month during the summer.
4) A car increases its distance from a garage as it travels at a constant speed of 25 miles per hour.
15. Which situation could be modeled by using a linear function?
1) a bank account balance that grows at a rate of 5% per year, compounded annually
2) a population of bacteria that doubles every 4.5 hours
3) the cost of cell phone service that charges a base amount plus 20 cents per minute
4) the concentration of medicine in a person's body that decays by a factor of one-third every hour
16. Which of the three situations given below is best modeled by an exponential function?
I. A bacteria culture doubles in size every day.
II. A plant grows by 1 inch every 4 days.
III. The population of a town declines by 5% every 3 years.
1) I, only
2) I and II
3) II, only
4) I and III
17. Which situation could be modeled with an exponential function?
1) the amount of money in a savings account where $\$ 150$ is deducted every month.
2) the amount of money in Suzy's piggy bank which she adds $\$ 10$ to each week.
3) the amount of money in a certificate of deposit that gets 4% interest each year
4) the amount of money in Jaclyn's wallet which increases and decreases by a different amount each week.
18. Which situation could be modeled with a linear function?
1) the height of a ball that is thrown in the air
2) the price of a car that depreciates 20% per year
3) the amount of money Jonathan pays for a certain number of gallons of gas at $\$ 3.85$ per gallon
4) a bacteria colony which doubles in number every 4 hours
19. Which situation could be modeled with an exponential function?
1) the amount of money in a savings account where $\$ 150$ is deducted every month.
2) the amount of money in Suzy's piggy bank which she adds $\$ 10$ to each week.
3) the amount of money in a certificate of deposit that gets 4% interest each year
4) the amount of money in Jaclyn's wallet which increases and decreases by a different amount each week.

Factoring

Greatest Common Factor: GCF()
Difference of Two Squares: $(\sqrt{1}+\sqrt{2})(\sqrt{1}-\sqrt{2})$
Trinomials: ($\mathrm{x} \quad$)(x)

1) First sign comes down
2) The two signs must multiply for the last sign
3) Find two numbers that multiply to the last number and add/subtract to the middle number

Bridge Method: (Trinomial with a leading coefficient bigger than 1)

1) Build a bridge between the first and last numbers (Multiply)
2) Factor Trinomial Normally
3) Pay the toll (Divide by the leading coefficient)
*If possible, reduce the fraction
If they divide nicely, divide them
If not, put the denominator in front of the variable inside the parenthesis
*Factor further if necessary

Factor each expression

1. $4 \mathrm{x}+8$
2. $12 \mathrm{x}+18$
3. $x^{2}-7 x$
4. $2 x^{2}-4 x y$
5. $\quad 5 x^{2} y-20 x$
6. $x^{2}-64$
7. $y^{2}-36$
8. $4 t^{2}-25$
9. $9 x^{2}-16 y^{4}$
10. $36-25 \mathrm{x}^{2}$
11. $100 y^{4}-49 t^{6}$
12. $x^{2}+4 x-12$
13. $m^{2}-8 m+15$
14. $y^{2}+5 y-14$
15. $x^{2}-3 x-10$
16. $x^{2}-9 x-36$
17. $x^{4}+4 x^{2}-12$
18. $x^{4}-8 x^{2}-9$
19. $2 x^{2}-50$
20. $y^{2}+3 y+2$
21. $x^{2}+x-12$
22. $1-9 x^{8} y^{4}$
23. $x^{2}-8 x-20$
24. $x^{2}-7 x+12$
25. $y^{2}-21 y+110$
26. $x^{6}-6 x^{3}+9$
27. $x^{4}+x^{2}-2$
28. $2 x^{2}-8 x-10$
29. $3 x^{2}+9 x-12$
30. $2 x^{2}+14 x+24$
31. $a x^{2}-2 a x-8 a$
32. $12 x^{2}-75$
33. $2 y^{2}-5 y-7$
34. $2 x^{2}+15 x-8$
35. $2 x^{2}+7 x-4$
36. $6 x^{2}-11 x-10$
37. $2 x^{2}-9 x-18$
38. $3 x^{2}+2 x-8$
39. $y x^{2}-64 y$
40. $x^{4}-81$
41. $8 x^{2}+7 x-1$
42. $6 x^{2}+x-12$

Solving Quadratic Equations by Factoring Quadratic Equations
Mr. x^{2} wants to party. Before he can party, all of his friends have to come over. Once all of his friends come over, they party! At the party, they want to blow bubbles(factor).
*Divide out an integer GCF if possible

1) Bring all terms to the side with $x^{2}\left(x^{2}\right.$ should be positive)
2) Factor (Follow the steps of factoring)
3) Set each factor equal to zero (T-chart) and solve
1. $y^{2}-5 y-6=0$
2. $x^{2}+4 x=0$
3. $a^{2}-8 a=20$
4. $3 x^{2}=48$
5. $x^{2}+8 x=20$
6. $x^{2}+3 x=8 x-4$
7. $n^{2}=3 n+18$
8. $2 x^{2}+3 x=5$
9. $4 x^{2}=64$
10. $4 x^{2}+4 x-3=0$

Solving Quadratic Equations Using the Quadratic Formula Quadratic Formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1) $a x^{2}+b x+c=0$
2) List a, b, and c values
3) Substitute values into quadratic formula
4) Type into calculator, one with plus, one with minus.
5) Round to the given value.

Solve the following equations rounding all answers to the nearest tenth.

1. $3 x^{2}-5 x-7=0$
2. $4 w^{2}+12 w-44=0$
3. $x^{2}+x-5=0$
4. $2 x^{2}+4 x=1$
5. $6 x^{2}+5 x-6=0$
6. $7 x^{2}+2 x-2=0$
7. $3 x^{2}+2 x=8$
8. $4 x^{2}+3 x=-2$
9. $3 x^{2}+2 x=3$
10. $5 x^{2}-2 x=3$
11. $5 x^{2}+2 x=-3 x+2$
12. $6 x^{2}+x=4 x+5$

Solving Quadratic Equations Using Completing the Square Completing the Square: $(x-a)^{2}$
*Divide out a GCF if possible

1) Bring both variable terms to one side and the constant term to the other side
2) Add $\left(\frac{b}{2}\right)^{2}$ to both sides
3) Factor the trinomial (Both factors must be the same)
4) Rewrite the factors as a binomial squared
5) Take the square root of both sides (The right hand side should have a \pm)
6) Add or subtract to isolate x
1. Which equation has the same solution as $x^{2}-6 x-12=0$?
1) $(x+3)^{2}=21$
2) $(x-3)^{2}=21$
3) $(x+3)^{2}=3$
4) $(x-3)^{2}=3$
2. Which equation has the same solutions as $x^{2}-8 x+3=0$?
(1) $(x-8)^{2}=16$
(3) $(x-4)^{2}=13$
(2) $(x-8)^{2}=13$
(4) $(x-4)^{2}=61$
3. When solving the equation $x^{2}-8 x-7=0$ by completing the square, which equation is a step in the process?
1) $(x-4)^{2}=9$
2) $(x-4)^{2}=23$
3) $(x-8)^{2}=9$
4) $(x-8)^{2}=23$
4. Which equation has the same solutions as $x^{2}+6 x-7=0$?
1) $(x+3)^{2}=2$
2) $(x-3)^{2}=2$
3) $(x-3)^{2}=16$
4) $(x+3)^{2}=16$
5. The method of completing the square was used to solve the equation $2 x^{2}-12 x+6=0$. Which equation is a correct step when using this method?
1) $(x-3)^{2}=6$
2) $(x-3)^{2}=-6$
3) $(x-3)^{2}=3$
4) $(x-3)^{2}=-3$
6. The quadratic equation $x^{2}-6 x=12$ is rewritten in the form $(x+p)^{2}=q$, where q is a constant. What is the value of p ?
1) -12
2) -9
3) -3
4) 9
7. What are the solutions to the equation $x^{2}-8 x=10$?
1) $4 \pm \sqrt{10}$
2) $4 \pm \sqrt{26}$
3) $-4 \pm \sqrt{10}$
4) $-4 \pm \sqrt{26}$
8. What are the roots of the equation $x^{2}+4 x-16=0$?
1) $2 \pm 2 \sqrt{5}$
2) $-2 \pm 2 \sqrt{5}$
3) $2 \pm 4 \sqrt{5}$
4) $-2 \pm 4 \sqrt{5}$
9. Solve the equation $x^{2}-6 x-19=0$ using the completing the square method.
10. Solve the equation $x^{2}-6 x=15$ by completing the square.
11. Solve the following equation by completing the square: $x^{2}+4 x=2$

In Terms of x with Quadratics

1) List the things you are comparing
2) Call the last thing x
3) Express everything else in terms of x
4) Create an equation to represent the situation
5) Solve the quadratic equation
a. Everything to one side
b. Factor
c. Set each factor equal to zero
6) Substitute x into your original expressions and answer the question
1. Javon's homework is to determine the dimensions of his rectangular backyard. He knows that the length is 10 feet more than the width, and the total area is 144 square feet. Write an equation that Javon could use to solve this problem. Then find the dimensions, in feet, of his backyard.
2. The length of a rectangle is 3 inches more than its width. The area of the rectangle is 40 square inches. What is the length, in inches, of the rectangle?
3. A rectangle has an area of 24 square units. The width is 5 units less than the length. What is the length, in units, of the rectangle?
4. A landscaper is creating a rectangular flower bed such that the width is half of the length. The area of the flower bed is 34 square feet. Write and solve an equation to determine the width of the flower bed, to the nearest tenth of a foot.
5. The length of a rectangular sign is 6 inches more than half its width. The area of this sign is 432 square inches. Write an equation in one variable that could be used to find the number of inches in the dimensions of this sign. Solve this equation algebraically to determine the dimensions of this sign, in inches.
6. When 36 is subtracted from the square of a number, the result is five times the number. What is the positive solution?
7. Jordan and Aaron are brothers. Jordan's age is four more than Aaron's age. If the product of their ages is 32 , how old is Jordan?
8. Tamara has two sisters. One of the sisters is 7 years older than Tamara. The other sister is 3 years younger than Tamara. The product of Tamara's sisters' ages is 24 . How old is Tamara?

Picture Frame Questions

Picture frame questions: Add 2x to the original length AND width.
Area of a rectangle: $A=l w$

1. A rectangular garden measuring 12 meters by 16 meters is to have a walkway installed around it with a width of x meters, as shown in the diagram below. Together, the walkway and the garden have an area of 396 square meters.
Write an equation that can be used to find x, the width of the walkway. Describe how your equation models the situation. Determine and state the width of the walkway, in meters.

2. A rectangular picture measures 6 inches by 8 inches. Simon wants to build a wooden frame for the picture so that the framed picture takes up a maximum area of 100 square inches on his wall. The pieces of wood that he uses to build the frame all have the same width. Write an equation or inequality that could be used to determine the maximum width of the pieces of wood for the frame Simon could create. Explain how your equation or inequality models the situation. Solve the equation or inequality to determine the maximum width of the pieces of wood used for the frame to the nearest tenth of an inch.

Zeros, Vertex, Axis of Symmetry

The zeros (roots) hit the x axis. Graph the equation in the calculator and look at the graph. The vertex (maximum/minimum) is the turning point.
The axis of symmetry (AOS) is the vertical line that cuts the graph in half. $x=\#$

1. The zeros of the function $f(x)=(x+2)^{2}-25$ are
1) -2 and 5
2) -3 and 7
3) -5 and 2
4) -7 and 3
2. The zeros of the function $f(x)=2 x^{2}-4 x-6$ are
1) 3 and -1
2) 3 and 1
3) -3 and 1
4) -3 and -1
3. The zeros of the function $p(x)=x^{2}-2 x-24$ are
1) -8 and 3
2) -4 and 6
3) -6 and 4
4) -3 and 8
4. For which function defined by a polynomial are the zeros of the polynomial -4 and -6 ?
1) $y=x^{2}-10 x-24$
2) $y=x^{2}+10 x+24$
3) $y=x^{2}+10 x-24$
4) $y=x^{2}-10 x+24$
5. If $4 x^{2}-100=0$, the roots of the equation are
1) -25 and 25
2) -25 , only
3) -5 and 5
4) -5 , only
6. The graphs below represent functions defined by polynomials. For which function are the zeros of the polynomials 2 and -3 ?
(1)
(2)
(3)
(4)

7. Which polynomial function has zeros at $-3,0$, and 4 ?
1) $f(x)=(x+3)\left(x^{2}+4\right)$
2) $f(x)=\left(x^{2}-3\right)(x-4)$
3) $f(x)=x(x+3)(x-4)$
4) $f(x)=x(x-3)(x+4)$
8. The graph of $y=\frac{1}{2} x^{2}-x-4$ is shown below. The points $A(-2,0), B(0,-4)$, and $C(4,0)$ lie on this graph.
Which of these points can determine the zeros of the equation $y=\frac{1}{2} x^{2}-x-4$?
1) A, only
2) B, only
3) A and C, only
4) A, B, and C

9. Which function has zeros of -4 and 2 ?
1) $f(x)=x^{2}+7 x-8$
2) $g(x)=x^{2}-7 x-8$

3)
10. The graph of $f(x)$ is shown below.

Based on this graph, what are the roots of the equation $f(x)=0$?

1) 1 and -5
2) -1 and 5
3) 2 and -9
4) -1 and -5 and 5

11. What is the equation of the axis of symmetry of the parabola shown in the diagram below?
1) $x=-0.5$
2) $x=2$
3) $x=4.5$
4) $x=13$

12. What are the vertex and the axis of symmetry of the parabola shown in the diagram below?
1) The vertex is $(-2,-3)$, and the axis of symmetry is $x=-2$.
2) The vertex is $(-2,-3)$, and the axis of symmetry is $y=-2$.
$3)$ The vertex is $(-3,-2)$, and the axis of symmetry is $y=-2$.
3) The vertex is $(-3,-2)$, and the axis of symmetry is $x=-2$.

13. What is the vertex of the graph of the equation $y=3 x^{2}+6 x+1$?
1) $(-1,-2)$
2) $(-1,10)$
3) $(1,-2)$
4) $(1,10)$
14. The graph below represents the parabolic path of a ball kicked by a young child. What are the vertex and the axis of symmetry for the parabola?
1) vertex: $(3,8)$; axis of symmetry: $x=3$
2) vertex: $(3,8)$; axis of symmetry: $y=3$
3) vertex: $(8,3)$; axis of symmetry: $x=3$
4) vertex: (8,3); axis of symmetry: $y=3$

Vertex Form of a Parabola

Completing the Square Method

1) $f(x)+c=a\left(x^{2}+b x\right)$
2) Add the distributed value of $\left(\frac{b}{2}\right)^{2}$ to both sides
3) Factor the trinomial
4) Re-write as a binomial squared
5) Isolate $f(x)$

Rewrite the following equations in vertex form and state the vertex

1. $f(x)=x^{2}+6 x+2$
2. $f(x)=x^{2}-8 x+3$
3. $f(x)=2 x^{2}+12 x-6$
4. $y=4 x^{2}+8 x-6$
5. $f(x)=-x^{2}+4 x+16$
6. $f(x)=x^{2}+12 x+2$
7. $f(x)=-x^{2}+14 x+20$
8. $f(x)=4 x^{2}+12 x-28$
9. Identify the turning point of the function $f(x)=x^{2}-2 x+8$ by writing its equation in vertex form.
10. Given the function $f(x)=-x^{2}+8 x+9$, state whether the vertex represents a maximum or minimum point for the function. Explain your answer.
Rewrite $f(x)$ in vertex form by completing the square.

Modeling Parabolas

The initial height is the y-intercept/constant term.
The domain is from [0 ,second zero].
The vertex is the turning point. $2^{\text {nd }}$ Trace (Calc): Maximum/Minimum
Vertex Context: The maximum " y subject" is " y value units" after " x value units"
The object hits the ground at the second zero
To find the zeros algebraically, set the equation equal to zero, factor, set each factor equal to 0 .

1. The expression $-4.9 t^{2}+50 t+2$ represents the height, in meters, of a toy rocket t seconds after launch. The initial height of the rocket, in meters, is
1) 0
2) 2
3) 4.9
4) 50
2. The height of a ball Doreen tossed into the air can be modeled by the function
$h(x)=-4.9 x^{2}+6 x+5$, where x is the time elapsed in seconds, and $h(x)$ is the height in meters. The number 5 in the function represents
1) the initial height of the ball
2) the time at which the ball was at its highest point
3) the time at which the ball reaches the ground
4) the maximum height the ball attained when thrown in the air
3. A toy rocket is launched from the ground straight upward. The height of the rocket above the ground, in feet, is given by the equation $h(t)=-16 t^{2}+64 t$, where t is the time in seconds. Determine the domain for this function in the given context. Explain your reasoning.
4. The function $h(t)=-16 t^{2}+144$ represents the height, $h(t)$, in feet, of an object from the ground at t seconds after it is dropped. A realistic domain for this function is
1) $-3 \leq t \leq 3$
2) $0 \leq t \leq 3$
3) $0 \leq h(t) \leq 144$
4) all real numbers
5. Morgan throws a ball up into the air. The height of the ball above the ground, in feet, is modeled by the function $h(t)=-16 t^{2}+24 t$, where t represents the time, in seconds, since the ball was thrown. What is the appropriate domain for this situation?
1) $0 \leq t \leq 1.5$
2) $0 \leq t \leq 9$
3) $0 \leq h(t) \leq 1.5$
4) $0 \leq h(t) \leq 9$
6. A manager wanted to analyze the online shoe sales for his business. He collected data for the number of pairs of shoes sold each hour over a 14-hour time period. He created a graph to model the data, as shown below.
The manager believes the set of integers would be the most appropriate domain for this model. Explain why he is incorrect.

7. Alex launched a ball into the air. The height of the ball can be represented by the equation $h=-8 t^{2}+40 t+5$, where h is the height, in units, and t is the time, in seconds, after the ball was launched. Graph the equation from $t=0$ to $t=5$ seconds.
State the coordinates of the vertex and explain its meaning in the context of the problem.

Time (in seconds)
8. Paul plans to have a rectangular garden adjacent to his garage. He will use 36 feet of fence to enclose three sides of the garden. The area of the garden, in square feet, can be modeled by $f(w)=w(36-2 w)$, where w is the width in feet. On the set of axes below, sketch the graph of $f(w)$. Explain the meaning of the vertex in the context of the problem.

9. An Air Force pilot is flying at a cruising altitude of 9000 feet and is forced to eject from her aircraft. The function $h(t)=-16 t^{2}+128 t+9000$ models the height, in feet, of the pilot above the ground, where t is the time, in seconds, after she is ejected from the aircraft. Determine and state the vertex of $h(t)$. Explain what the second coordinate of the vertex represents in the context of the problem.
10. A ball is projected up into the air from the surface of a platform to the ground below. The height of the ball above the ground, in feet, is modeled by the function $f(t)=-16 t^{2}+96 t+112$, where t is the time, in seconds, after the ball is projected. State the height of the platform, in feet. State the coordinates of the vertex. Explain what it means in the context of the problem.
11. When an apple is dropped from a tower 256 feet high, the function $h(t)=-16 t^{2}+256$ models the height of the apple, in feet, after t seconds. Determine, algebraically, the number of seconds it takes the apple to hit the ground.
12. The height, H, in feet, of an object dropped from the top of a building after t seconds is given by $H(t)=-16 t^{2}+144$. How many feet did the object fall between one and two seconds after it was dropped? Determine, algebraically, how many seconds it will take for the object to reach the ground.
13. The height, H, in feet, of an object dropped from the top of a building after t seconds is given by $H(t)=-16 t^{2}+144$. How many feet did the object fall between one and two seconds after it was dropped? Determine, algebraically, how many seconds it will take for the object to reach the ground.

Functions

A function is when each x value corresponds ("talks") to only one y value (x does not repeat) A graph is a function if it passes the vertical line test (no vertical line can touch twice)

1. Which relation is not a function?
1) $\{(2,4),(1,2),(0,0),(-1,2),(-2,4)\}$
2) $\{(2,4),(1,1),(0,0),(-1,1),(-2,4)\}$
3) $\{(2,2),(1,1),(0,0),(-1,1),(-2,2)\}$
4) $\{(2,2),(1,1),(0,0),(1,-1),(2,-2)\}$
2. Which set is a function?
1) $\{(3,4),(3,5),(3,6),(3,7)\}$
2) $\{(1,2),(3,4),(4,3),(2,1)\}$
3) $\{(6,7),(7,8),(8,9),(6,5)\}$
4) $\{(0,2),(3,4),(0,8),(5,6)\}$
3. Which set of ordered pairs does not represent a function?
1) $\{(3,-2),(-2,3),(4,-1),(-1,4)\}$
2) $\{(3,-2),(3,-4),(4,-1),(4,-3)\}$
3) $\{(3,-2),(4,-3),(5,-4),(6,-5)\}$
4) $\{(3,-2),(5,-2),(4,-2),(-1,-2)\}$
4. A function is defined as $\{(0,1),(2,3),(5,8),(7,2)\}$. Isaac is asked to create one more ordered pair for the function. Which ordered pair can he add to the set to keep it a function?
1) $(0,2)$
2) $(5,3)$
3) $(7,0)$
4) $(1,3)$
5. A function is shown in the table below.

If included in the table, which ordered pair, $(-4,1)$ or $(1,-4)$, would result in a relation that is no longer a function? Explain your answer.
6. A mapping is shown in the diagram below.

This mapping is

1) a function, because Feb has two outputs, 28 and 29
2) a function, because two inputs, Jan and Mar, result in the output 31

3) not a function, because Feb has two outputs, 28 and 29
not a function, because two inputs, Jan and Mar, result in the output 31
7. Which graph represents a function?
1)

2)

3)

4)

8. Which graph represents a function?
1)

3)

2)

4)

9. Which graph represents a function?
1)

2)

3)

4)

10. Marcel claims that the graph below represents a function.

State whether Marcel is correct. Justify your answer.

11. A relation is graphed on the set of axes below.

Based on this graph, the relation is

1) a function because it passes the horizontal line test
2) a function because it passes the vertical line test
3) not a function because it fails the horizontal line test
4) not a function because it fails the vertical line test
12. Which relation does not represent a function?
1)

x	1	2	3	4	5	6
y	3.2	4	5.1	6	7.4	8.8

3) $y=3 \sqrt{x+1}-2$

4)

4)

13. Four relations are shown below. State which relation(s) are functions. Explain why the other relation(s) are not functions.

$\{(1,2),(2,5),(3,8),(2,-5),(1,-2)\}$
II

\mathbf{x}	\mathbf{y}
-4	1
0	3
4	5
6	6
III	

$$
y=x^{2}
$$

IV

Domain and Range

Domain is all possible x values
Range is all possible y values
If given an equation, use your calculator
If given a graph, using your pencil, for domain travel vertically along the x axis and for range travel horizontally along the y axis to see where the values begin and end.
Modeling Domain: The answer is almost always:
Non-Negative Integers $\{0,1,2,3,4, \ldots\}$: If 0 is possible
OR
Positive Integers $\{1,2,3,4, \ldots\}$: If 0 is not possible (workers needed to complete a job)

1. What is the domain of the relation shown below?

$$
\{(4,2),(1,1),(0,0),(1,-1),(4,-2)\}
$$

1) $\{0,1,4\}$
2) $\{-2,-1,0,1,2,4\}$
3) $\{-2,-1,0,1,2\}$
4) $\{-2,-1,0,0,1,1,1,2,4,4\}$
2. The accompanying graph shows the elevation of a certain region in New York State as a hiker travels along a trail.

What is the domain of this function?
(1) $1,000 \leq x \leq 1,500$
(3) $0 \leq x \leq 12$
(2) $1,000 \leq y \leq 1,500$
(4) $0 \leq y \leq 12$

3. A meteorologist drew the accompanying graph to show the changes in relative humidity during a 24 -hour period in New York City.

What is the range of this set of data?
(1) $0 \leq y \leq 24$
(3) $30 \leq y \leq 80$
(2) $0 \leq x \leq 24$
(4) $30 \leq x \leq 80$

4. The function $f(x)$ is graphed below.

The domain of this function is

1) all positive real numbers
2) $x \geq 0$
3) all positive integers
4) $x \geq-1$

5. The graph of the function $f(x)=\sqrt{x+4}$ is shown below.

The domain of the function is

1) $\{x \mid x>0\}$
2) $\{x \mid x \geq 0\}$
3) $\{x \mid x>-4\}$
4) $\{x \mid x \geq-4\}$

6. If the domain of the function $f(x)=2 x^{2}-8$ is $\{-2,3,5\}$, then the range is
1) $\{-16,4,92\}$
2) $\{-16,10,42\}$
3) $(0,10,42\}$
4) $\{0,4,92\}$
7. The function $f(x)=2 x^{2}+6 x-12$ has a domain consisting of the integers from -2 to 1 , inclusive. Which set represents the corresponding range values for $f(x)$?
1) $\{-32,-20,-12,-4\}$
2) $\{-16,-12,-4\}$
3) $\{-32,-4\}$
4) $\{-16,-4\}$
8. If the function $f(x)=x^{2}$ has the domain $\{0,1,4,9\}$, what is its range?
1) $\{0,1,2,3\}$
2) $\{0,1,16,81\}$
3) $\{0,-1,1,-2,2,-3,3)$
4) $\{0,-1,1,-16,16,-81,81\}$
9. Let f be a function such that $f(x)=2 x-4$ is defined on the domain $2 \leq x \leq 6$. The range of this function is
1) $0 \leq y \leq 8$
2) $0 \leq y<\infty$
3) $2 \leq y \leq 6$
4) $-\infty<y<\infty$
10. The range of the function defined as $y=5^{x}$ is
1) $y<0$
2) $y>0$
3) $y \leq 0$
4) $y \geq 0$
11. The range of the function $f(x)=x^{2}+2 x-8$ is all real numbers
1) less than or equal to -9
2) less than or equal to -1
3) greater than or equal to -9
4) greater than or equal to -1
12. If $f(x)=x^{2}+2$, which interval describes the range of this function?
1) $(-\infty, \infty)$
2) $[0, \infty)$
3) $[2, \infty)$
4) $(-\infty, 2]$
13. Officials in a town use a function, C, to analyze traffic patterns. $C(n)$ represents the rate of traffic through an intersection where n is the number of observed vehicles in a specified time interval. What would be the most appropriate domain for the function?
1) $\{\ldots-2,-1,0,1,2,3, \ldots\}$
2) $\{-2,-1,0,1,2,3\}$
3) $\left\{0, \frac{1}{2}, 1,1 \frac{1}{2}, 2,2 \frac{1}{2}\right\}$
4) $\{0,1,2,3, \ldots\}$
14. Which domain would be the most appropriate set to use for a function that predicts the number of household online-devices in terms of the number of people in the household?
1) integers
2) irrational numbers
3) whole numbers
4) rational numbers
15. A store sells self-serve frozen yogurt sundaes. The function $C(w)$ represents the cost, in dollars, of a sundae weighing w ounces. An appropriate domain for the function is
1) integers
2) nonnegative integers
3) rational numbers
4) nonnegative rational numbers
16. If the function $h(x)$ represents the number of full hours that it takes a person to assemble x sets of tires in a factory, which would be an appropriate domain for the function?
(1) the set of real numbers
(3) the set of integers
(2) the set of negative integers
(4) the set of non-negative integers
17. An online company lets you download songs for $\$ 0.99$ each after you have paid a $\$ 5$ membership fee. Which domain would be most appropriate to calculate the cost to download songs?
1) rational numbers greater than zero
3) integers less than or equal to zero
2) whole numbers greater than or equal to one
3) whole numbers less than or equal to one
18. At an ice cream shop, the profit, $P(c)$, is modeled by the function $P(c)=0.87 c$, where c represents the number of ice cream cones sold. An appropriate domain for this function is
1) an integer ≤ 0
2) a rational number ≤ 0
3) an integer ≥ 0
4) a rational number ≥ 0
19. The daily cost of production in a factory is calculated using $c(x)=200+16 x$, where x is the number of complete products manufactured. Which set of numbers best defines the domain of $c(x)$?
1) integers
2) positive rational numbers
3) positive real numbers
4) whole numbers

Increasing/Decreasing

The interval where a function is increasing/decreasing is the x values where the interval starts and stops. From left to right, uphill is increasing and downhill is decreasing.

State the intervals where the following graphs are increasing and decreasing.
1.

2.

3.

5.

Transforming Functions

If adding to $f(x)$, the graph moves up or down
If adding to x , the graph moves left or right (the opposite direction in which you would think)
$y=f(x)+a$ moves UP a units
$y=f(x)-a$ moves DOWN a units
$y=f(x+a)$ moves LEFT a units
$y=f(x-a)$ moves RIGHT a units
If there is a negative in front, the graph is reflected over the x axis (opens downward) $y=-f(x)$, reflect over x axis (opens downward)
If positive coefficient, the vertex is a minimum and the graph opens upward If negative coefficient, the vertex is a maximum and the graph opens downward
$y=a f(x)$ Vertical Dilation
If $|a|>1$, vertical stretch, narrower
If $|a|<1$, vertical shrink, wider

1. Compared to the graph of $f(x)=x^{2}$, the graph of $g(x)=(x-2)^{2}+3$ is the result of translating $f(x)$
1) 2 units up and 3 units right
2) 2 units down and 3 units up
3) 2 units right and 3 units up
4) 2 units left and 3 units right
2. Given the parent function $f(x)=x^{3}$, the function $g(x)=(x-1)^{3}-2$ is the result of a shift of $f(x)$
1) 1 unit left and 2 units down
2) 1 unit left and 2 units up
3) 1 unit right and 2 units down
4) 1 unit right and 2 units up
3. If the original function $f(x)=2 x^{2}-1$ is shifted to the left 3 units to make the function $g(x)$, which expression would represent $g(x)$?
1) $2(x-3)^{2}-1$
2) $2(x+3)^{2}-1$
3) $2 x^{2}+2$
4) $2 x^{2}-4$
4. Joey's math class is studying the basic quadratic function, $f(x)=x^{2}$. Each student is supposed to make two new functions by adding or subtracting a constant to the function. Joey chooses the functions $g(x)=x^{2}-5$ and $h(x)=x^{2}+2$. What transformations would map $f(x)$ to $g(x)$ and $f(x)$ to $h(x)$?
(1) shift left 5 , shift right 2
(3) shift up 5 , shift down 2
(2) shift right 5 , shift left 2
(4) shift down 5 , shift up 2
5. Describe the effect that each transformation below has on the function $f(x)=|x|$, where $a>0$.
$g(x)=|x-a|$
$h(x)=|x|-a$
6. The graph of $y=f(x)$ is shown below.

What is the graph of $y=f(x+1)-2$?

1)

2)

3)

4)

7. Which graph represents the equation $y=|x-2|$?
(1)

(2)

(3)

(4)

8. In the diagram below, $f(x)=x^{3}+2 x^{2}$ is graphed. Also graphed is $g(x)$, the result of a translation of $f(x)$.
Determine an equation of $g(x)$. Explain your reasoning.

9. How does the graph of $f(x)=3(x-2)^{2}+1$ compare to the graph of $g(x)=x^{2}$?

1) The graph of $f(x)$ is wider than the graph of $g(x)$, and its vertex is moved to the left 2 units and up 1 unit.
2) The graph of $f(x)$ is narrower than the graph of $g(x)$, and its vertex is moved to the right 2 units and up 1 unit.
3) The graph of $f(x)$ is narrower than the graph of $g(x)$, and its vertex is moved to the left 2 units and up 1 unit.
4) The graph of $f(x)$ is wider than the graph of $g(x)$, and its vertex is moved to the right 2 units and up 1 unit.
10. The graph of the equation $y=a x^{2}$ is shown below.

If a is multiplied by $-\frac{1}{2}$, the graph of the new equation is

1) wider and opens downward
2) wider and opens upward
3) narrower and opens downward
4) narrower and opens upward

11. When the function $f(x)=x^{2}$ is multiplied by the value a, where $a>1$, the graph of the new function, $g(x)=a x^{2}$
1) opens upward and is wider
2) opens upward and is narrower
3) opens downward and is wider
4) opens downward and is narrower
12. In the functions $f(x)=k x^{2}$ and $g(x)=|k x|, k$ is a positive integer. If k is replaced by $\frac{1}{2}$, which statement about these new functions is true?
1) The graphs of both $f(x)$ and $g(x)$ become wider.
2) The graphs of both $f(x)$ and $g(x)$ shift vertically.
3) The graph of $f(x)$ becomes narrower and the graph of $g(x)$ shifts left.
4) The graph of $f(x)$ shifts left and the graph of $g(x)$ becomes wider.
13. The graph of the equation $y=x^{2}$ is shown below. Which statement best describes the change in this graph when the coefficient of x^{2} is multiplied by 4 ?
1) The parabola becomes wider.
2) The parabola becomes narrower.
3) The parabola will shift up four units.
4) The parabola will shift right four units.

14. Richard is asked to transform the graph of $b(x)$ below. The graph of $b(x)$ is transformed using the equation $h(x)=b(x-2)-3$. Describe how the graph of $b(x)$ changed to form the graph of $h(x)$

15. The graph of the function $p(x)$ is represented below. On the same set of axes, sketch the function $p(x+2)$.

Average rate of change: $\frac{f(b)-f(a)}{b-a}$
Use a table to organize your values. If given an equation, type it into $y=$. If given a graph, pull the values from the graph. $f(b)$ and $f(a)$ are y values. b and a are x values.
If asked which interval has the greatest rate of change, find the average rate of change for each interval.
"On average, from "a" to "b", the "y topic" "increases/decreases" by "AROC" "y units" per "x unit".

1. Joey enlarged a 3-inch by 5-inch photograph on a copy machine. He enlarged it four times. The table below shows the area of the photograph after each enlargement.

Enlargement	0	1	2	3	4
Area (square inches)	15	18.8	23.4	29.3	36.6

What is the average rate of change of the area from the original photograph to the fourth enlargement, to the nearest tenth?

1) 4.3
2) 4.5
3) 5.4
4) 6.0
2. A family is traveling from their home to a vacation resort hotel. The table below shows their distance from home as a function of time.
Determine the average rate of change between hour 2 and hour 7, including units.

Time (hrs)	0	2	5	7
Distance (mi)	0	140	375	480

3. The table below shows the average diameter of a pupil in a person's eye as he or she grows older.
What is the average rate of change, in millimeters per year, of a person's pupil diameter from age 20 to age 80 ?
1) 2.4
2) 0.04
3) -2.4
4) -0.04

Age (years)	Average Pupil Diameter (mm)
20	4.7
30	4.3
40	3.9
50	3.5
60	3.1
70	2.7
80	2.3

4. The graph of $p(x)$ is shown below. What is the average rate of change over the interval $-4 \leq x \leq 1$?

5. A ball is thrown into the air from the edge of a 48 -foot-high cliff so that it eventually lands on the ground. The graph below shows the height, y, of the ball from the ground after x seconds. What is the average rate of change of the ball between 1 and 5 seconds?

6. The depth of the water at a marker 20 feet from the shore in a bay is depicted in the graph below. If the depth, d, is measured in feet and time, t, is measured in hours since midnight, what is the average rate of change of the depth of the water between 3AM and 9AM?

7. For the function $f(x)=3^{x}$, find the average rate of change over the interval 0 to 5 .
8. An astronaut drops a rock off the edge of a cliff on the Moon. The distance, $d(t)$, in meters, the rock travels after t seconds can be modeled by the function $d(t)=0.8 t^{2}$. What is the average speed, in meters per second, of the rock between 5 and 10 seconds after it was dropped?
1) 12
2) 20
3) 60
4) 80
9. A population of rabbits in a lab, $p(x)$, can be modeled by the function $p(x)=20(1.014)^{x}$, where x represents the number of days since the population was first counted. Determine, to the nearest tenth, the average rate of change from day 50 to day 100 .
10. The graph below models the height of a remote-control helicopter over 20 seconds during flight.
Over which interval does the helicopter have the slowest average rate of change? Over which interval does the helicopter have the fastest average rate of change?

Time (seconds)
11. The graph below shows the distance in miles, m, hiked from a camp in h hours. Which hourly interval had the greatest rate of change? Which hourly interval had the least average rate of change?

1) hour 0 to hour 1
2) hour 1 to hour 2
3) hour 2 to hour 3
4) hour 3 to hour 4

12. The table below shows the year and the number of households in a building that had highspeed broadband internet access.
For which interval of time was the average rate of change the smallest?
1) 2002-2004
2) 2003-2005
3) 2004-2006
4) 2005-2007

Number of Households	11	16	23	33	42	47
Year	2002	2003	2004	2005	2006	2007

13. The table below shows the cost of mailing a postcard in different years. During which time interval did the cost increase at the greatest average rate?
1) $1898-1971$
2) 1971-1985
3) 1985-2006

Year	1898	1971	1985	2006	2012
Cost $(¢)$	1	6	14	24	35

4) $2006-2012$
14. A manager wanted to analyze the online shoe sales for his business. He collected data for the number of pairs of shoes sold each hour over a 14 -hour time period. He created a graph to model the data, as shown below. Determine the average rate of change between the sixth and fourteenth hours, and explain what it means in the context of the problem.

15. The distance needed to stop a car after applying the brakes varies directly with the square of the car's speed. The table below shows stopping distances for various speeds.
Determine the average rate of change in braking distance, in $\mathrm{ft} / \mathrm{mph}$, between one car traveling at 50 mph and one traveling at 70 mph . Explain what this rate of change means as it relates to braking distance.

Speed (mph)	10	20	30	40	50	60	70
Distance (ft)	6.25	25	56.25	100	156.25	225	306.25

16. The graph below represents the parabolic path of a ball kicked by a young child. Find the average rate of change from 3 to 6 seconds. Explain its meaning in the context of the problem.

Time (in seconds)
17. The population, $P(t)$, of a town increased according to the function $P(t)=12,000(1.03)^{t}$, where t is the number of years since 2000. Find the average rate of change from $t=10$ to $t=20$ rounding to the nearest integer. Explain its meaning in the context of the problem.
18. A manager wanted to analyze the online shoe sales for his business. He created a graph to model the data, as shown below. Determine the average rate of change between the sixth and fourteenth hours, and explain what it means in the context of the problem.

19. The table below shows the number of hours of daylight on the first day of each month in Rochester, NY. Given the data, what is the average rate of change in hours of daylight per month from January 1st to April 1st? Interpret what this means in the context of the problem.

Month	Hours of Daylight
Jan.	9.4
Feb.	10.6
March	11.9
April	13.9
May	14.7
June	15.4
July	15.1
Aug.	13.9
Sept.	12.5
Oct.	11.1
Nov.	9.7
Dec.	9.0

Graphing Functions

1) Get y by itself
2) Type into $y=$
3) If there is an interval/domain, plot only nice points between those values: no arrows If not, plot all "nice" points that fit on the graph (usually -10 to 10) and use arrows

* $a<x \leq b$ means all numbers between a and b
*For quadratic and absolute value, find a mirror image

1. Draw the graph of $y=\sqrt{x}-1$ on the set of axes below.

2. Graph $f(x)=\sqrt{x+2}$ over the domain $-2 \leq x \leq 7$.

3. On the set of axes below, graph $f(x)=|x-3|+2$.

4. Graph the function $f(x)=-x^{2}-6 x$ on the set of axes below. State the coordinates of the vertex of the graph.

5. On the set of axes below, draw the graph of $y=x^{2}-4 x-1$. State the equation of the axis of symmetry.

6. On the set of axes below, draw the graph of the equation $y=-\frac{3}{4} x+3$. Is the point $(3,2) \mathrm{a}$ solution to the equation? Explain your answer based on the graph drawn.

7. On the set of axes below, graph the function $y=|x+1|$.

8. On the set of axes below, graph the function represented by $y=\sqrt[3]{x-2}$ for the domain $-6 \leq x \leq 10$.

9. On the set of axes below, graph the line whose equation is $2 y=-3 x-2$.

10. Graph the function $f(x)=2^{x}-7$ on the set of axes below.

11. Graph $f(x)=x^{2}$ and $g(x)=2^{x}$ for $x \geq 0$ on the set of axes below.

12. Graph $f(x)$ and $g(x)$ on the set of axes below.

$$
\begin{gathered}
f(x)=x^{2}-4 x+3 \\
g(x)=\frac{1}{2} x+1
\end{gathered}
$$

Based on your graph, state one value of x that satisfies $f(x)=g(x)$. Explain your reasoning.
13. Graph $y=f(x)$ and $y=g(x)$ on the set of axes below. Determine and state all values of x for which $f(x)=g(x)$.

$$
\begin{gathered}
f(x)=2 x^{2}-8 x+3 \\
g(x)=-2 x+3
\end{gathered}
$$

14. On the set of axes below, graph $f(x)=x^{2}-1$ and $g(x)=3^{x}$.

Based on your graph, for how many values of x does $f(x)=g(x)$? Explain your reasoning.

Systems of Equations Word Problems with Graphing

1) Create a system of equations
2) Get y by itself and graph each
3) The point of intersection is the solution to the system. The x coordinate is the value for whatever x represents and the y coordinate is the value for whatever y represents.
1. Two families went to Rollercoaster World. The Brown family paid $\$ 170$ for 3 children and 2 adults. The Peckham family paid $\$ 360$ for 4 children and 6 adults. If x is the price of a child's ticket in dollars and y is the price of an adult's ticket in dollars, write a system of equations that models this situation. Graph your system of equations on the set of axes below.

State the coordinates of the point of intersection. Explain what each coordinate of the point of intersection means in the context of the problem.
2. Franco and Caryl went to a bakery to buy desserts. Franco bought 3 packages of cupcakes and 2 packages of brownies for $\$ 19$. Caryl bought 2 packages of cupcakes and 4 packages of brownies for $\$ 24$. Let x equal the price of one package of cupcakes and y equal the price of one package of brownies. Write a system of equations that describes the given situation. On the set of axes below, graph the system of equations.

Determine the exact cost of one package of cupcakes and the exact cost of one package of brownies in dollars and cents. Justify your solution
3. Central High School had five members on their swim team in 2010. Over the next several years, the team increased by an average of 10 members per year. The same school had 35 members in their chorus in 2010. The chorus saw an increase of 5 members per year. Write a system of equations to model this situation, where x represents the number of years since 2010 . Graph this system of equations on the set of axes below.

Explain in detail what each coordinate of the point of intersection of these equations means in the context of this problem.
4. Aidan and his sister Ella are having a race. Aidan runs at a rate of 10 feet per second. Ella runs at a rate of 6 feet per second. Since Ella is younger, Aidan is letting her begin 30 feet ahead of the starting line. Let y represent the distance from the starting line and x represent the time elapsed, in seconds. Write an equation to model the distance Aidan traveled. Write an equation to model the distance Ella traveled. On the set of axes below, graph your equations.

Exactly how many seconds does it take Aidan to catch up to Ella? Justify your answer.
5. A recreation center ordered a total of 15 tricycles and bicycles from a sporting goods store. The number of wheels for all the tricycles and bicycles totaled 38 . Write a linear system of equations that models this scenario, where t represents the number of tricycles and b represents the number of bicycles ordered. On the set of axes below, graph this system of equations.

Based on your graph of this scenario, could the recreation center have ordered 10 tricycles? Explain your reasoning.

Graphing Piecewise Functions

Create a table of values for each piece
Graph all points
*Make sure the border value without the equals gets an open circle.

1. Graph the following on the set of axes below:
$f(x)=\left\{\begin{array}{l}3-2 x, x \leq 2 \\ 2 x-1, x>2\end{array}\right.$

2. Graph the following on the set of axes below:
$f(x)=\left\{\begin{array}{l}x^{2}-2, x \leq 1 \\ 3, x>1\end{array}\right\}$

3. Graph the following function on the set of axes below.
$f(x)=\left\{\begin{array}{lr}|x|, & -3 \leq x<1 \\ 4, & 1 \leq x \leq 8\end{array}\right.$

4. On the set of axes below, graph the piecewise function: $f(x)=\left\{\begin{aligned}-\frac{1}{2} x, & x<2 \\ x, & x \geq 2\end{aligned}\right.$

Irregular Graphs

If the y axis is distance, 0 slope means there is no movement. The greater the slope, the faster the movement.
If the y axis is rate, 0 slope means the rate is staying the same. The greater the slope, the greater the rate is increasing.

1. A driver leaves home for a business trip and drives at a constant speed of 60 miles per hour for 2 hours. Her car gets a flat tire, and she spends 30 minutes changing the tire. She resumes driving and drives at 30 miles per hour for the remaining one hour until she reaches her destination. On the set of axes below, draw a graph that models the driver's distance from home.

2. One spring day, Elroy noted the time of day and the temperature, in degrees Fahrenheit. His findings are stated below.
At 6 a.m., the temperature was $50^{\circ} \mathrm{F}$. For the next 4 hours, the temperature rose 3° per hour. The next 6 hours, it rose 2° per hour. The temperature then stayed steady until 6 p.m. For the next 2 hours, the temperature dropped 1° per hour. The temperature then dropped steadily until the temperature was $56^{\circ} \mathrm{F}$ at midnight.
On the set of axes below, graph Elroy's data.

3. During a snowstorm, a meteorologist tracks the amount of accumulating snow. For the first three hours of the storm, the snow fell at a constant rate of one inch per hour. The storm then stopped for two hours and then started again at a constant rate of one-half inch per hour for the next four hours. On the grid below, draw and label a graph that models the accumulation of snow over time using the data the meteorologist collected.

4. The graph below models Craig's trip to visit his friend in another state. In the course of his travels, he encountered both highway and city driving. Based on the graph, during which interval did Craig most likely drive in the city? Explain your reasoning. Explain what might have happened in the interval between B and C. Determine Craig's average speed, to the nearest tenth of a mile per hour, for his entire trip.

5. The graph of $f(t)$ models the height, in feet, that a bee is flying above the ground with respect to the time it traveled in t seconds. State all time intervals when the bee's rate of change is zero feet per second. Explain your reasoning.

6. A graph of average resting heart rates is shown below. The average resting heart rate for adults is 72 beats per minute, but doctors consider restir Average Résting Heart Rate by Age within normal range.
Which statement about average resting heart rates is not supported by the graph?
1) A 10-year-old has the same average resting heart rate as a 20 -year-old.
2) A 20-year-old has the same average resting heart rate as a 30 -year-old.
3) A 40-year-old may have the same average resting heart rate for ten years.
4) The average resting heart rate for teenagers steadily decreases.

7. The graph below represents a jogger's speed during her 20-minute jog around her neighborhood.
Which statement best describes what the jogger was doing during the $9-12$ minute interval of her jog?
1) She was standing still.
2) She was increasing her speed.
3) She was decreasing her speed
4) She was jogging at a constant rate.

Identifying Functions

If asked which equation represents a table or graph, type the equation into the calculator and see if it matches the table or graph.
Look Carefully!

1. The table below represents the function F. The equation that represents this function is

\boldsymbol{x}	3	4	6	7	8
$\boldsymbol{F}(\boldsymbol{x})$	9	17	65	129	257

1) $F(x)=3^{x}$
2) $F(x)=3 x$
3) $F(x)=2^{x}+1$
4) $F(x)=2 x+3$
2. A laboratory technician studied the population growth of a colony of bacteria. He recorded the number of bacteria every other day, as shown in the partial table below.
Which function would accurately model the technician's data?
1) $f(t)=25^{t}$
2) $f(t)=25^{t+1}$
3) $f(t)=25 t$

\mathbf{t} (time, in days)	0	2	4
$\mathbf{f}(\mathbf{t})$ (bacteria)	25	15,625	$9,765,625$

4) $f(t)=25(t+1)$
3. Which function is shown in the table below?
1) $f(x)=3 x$
2) $f(x)=x+3$
3) $f(x)=-x^{3}$
4) $f(x)=3^{x}$

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-2	$\frac{1}{9}$
-1	$\frac{1}{3}$
0	1
1	3
2	9
3	27

4. Marc bought a new laptop for $\$ 1250$. He kept track of the value of the laptop over the next three years, as shown in the table below.

Years After Purchase	Value in Dollars
1	1000
2	800
3	640

Which function can be used to determine the value of the laptop for x years after the purchase?

1) $f(x)=1000(1.2)^{x}$
2) $f(x)=1000(0.8)^{x}$
3) $f(x)=1250(1.2)^{x}$
4) $f(x)=1250(0.8)^{x}$
5. Which chart could represent the function $f(x)=-2 x+6$?
1)

\mathbf{x}	$\mathrm{f}(\mathbf{x})$
0	6
2	10
4	14
6	18

2)

\mathbf{x}	$f(\mathbf{x})$
0	4
2	6
4	8
6	10

3)

\mathbf{x}	$\mathrm{f}(\mathbf{x})$
0	8
2	10
4	12
6	14

4)

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
0	6
2	2
4	-2
6	-6

6. The table below shows the temperature, $T(m)$, of a cup of hot chocolate that is allowed to chill over several minutes, m.
Which expression best fits the data for $T(m)$?
1) $150(0.85)^{m}$
2) $150(1.15)^{m}$

Time, m (minutes)	0	2	4	6	8
Temperature, T(m) $\left({ }^{\circ} \mathrm{F}\right)$	150	108	78	56	41

3) $150(0.85)^{m-1}$
4) $150(1.15)^{m-1}$
7. Which graph represents $y=\sqrt{x-2}$?
1)

3)

8. Based on the graph below, which expression is a possible factorization of $p(x)$?

1) $(x+3)(x-2)(x-4)$
2) $(x-3)(x+2)(x+4)$
3) $(x+3)(x-5)(x-2)(x-4)$
4) $(x-3)(x+5)(x+2)(x+4)$

9. Vinny collects population data, $P(h)$, about a specific strain of bacteria over time in hours, h, as shown in the graph below.

Which equation represents the graph of $P(h)$?

1) $P(h)=4(2)^{h}$
2) $P(h)=\frac{46}{5} h+\frac{6}{5}$
3) $P(h)=3 h^{2}+0.2 h+4.2$
4) $P(h)=\frac{2}{3} h^{3}-h^{2}+3 h+4$

10. Which equation(s) represent the graph below?

$$
\begin{array}{ll}
\text { I } & y=(x+2)\left(x^{2}-4 x-12\right) \\
\text { II } & y=(x-3)\left(x^{2}+x-2\right) \\
\text { III } & y=(x-1)\left(x^{2}-5 x-6\right)
\end{array}
$$

1) I, only
2) II, only
3) I and II
4) II and III

11. The graph of a quadratic function is shown below.

An equation that represents the function could be

1) $q(x)=\frac{1}{2}(x+15)^{2}-25$
2) $q(x)=-\frac{1}{2}(x+15)^{2}-25$
3) $q(x)=\frac{1}{2}(x-15)^{2}+25$
4) $q(x)=-\frac{1}{2}(x-15)^{2}+25$

12. Wenona sketched the polynomial $P(x)$ as shown on the axes below.

Which equation could represent $P(x)$?

1) $P(x)=(x+1)(x-2)^{2}$
2) $P(x)=(x-1)(x+2)^{2}$
3) $P(x)=(x+1)(x-2)$
4) $P(x)=(x-1)(x+2)$
13. A cubic function is graphed on the set of axes below.

Which function could represent this graph?

1) $f(x)=(x-3)(x-1)(x+1)$
2) $g(x)=(x+3)(x+1)(x-1)$
3) $h(x)=(x-3)(x-1)(x+3)$
4) $k(x)=(x+3)(x+1)(x-3)$

Determining if a point is on the graph

Substitute x and y into the equation
If the two sides are equal, yes!
If the two sides are not equal, no!

1. Which point is not on the graph represented by $y=x^{2}+3 x-6$?
1) $(-6,12)$
2) $(-4,-2)$
3) $(2,4)$
4) $(3,-6)$
2. Which ordered pair would not be a solution to $y=x^{3}-x$?
1) $(-4,-60)$
2) $(-3,-24)$
3) $(-2,-6)$
4) $(-1,-2)$
3. Which ordered pair below is not a solution to $f(x)=x^{2}-3 x+4$?
1) $(0,4)$
2) $(1.5,1.75)$
3) $(5,14)$
4) $(-1,6)$
4. Which point is not in the solution set of the equation $3 y+2=x^{2}-5 x+17$?
1) $(-2,10)$
2) $(-1,7)$
3) $(2,3)$
4) $(5,5)$
5. How many of the equations listed below represent the line passing through the points $(2,3)$ and $(4,-7)$?

$$
\begin{aligned}
& 5 x+y=13 \\
& y+7=-5(x-4) \\
& y=-5 x+13 \\
& y-7=5(x-4)
\end{aligned}
$$

3) 3
4) 4

Key Points

To compare key points, find the key point for each function. Use the graph, the table ($2^{\text {nd }}$ graph), and the calculate menu ($2^{\text {nd }}$ Trace).

1. Let f be the function represented by the graph below.

Let g be a function such that $g(x)=-\frac{1}{2} x^{2}+4 x+3$. Determine which function has the larger maximum value. Justify your answer.
2. Which quadratic function has the largest maximum?

1) $h(x)=(3-x)(2+x)$

$$
\text { 3) } k(x)=-5 x^{2}-12 x+4
$$

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	-3
0	5
1	9
2	9
3	5
4	-3

4)

3. The graph representing a function is shown below.

Which function has a minimum that is less than the one shown in the graph?

1) $y=x^{2}-6 x+7$
2) $y=|x+3|-6$
3) $y=x^{2}-2 x-10$
4) $y=|x-8|+2$

4. Which of the quadratic functions below has the smallest minimum value?
1) $h(x)=x^{2}+2 x-6$
2) $k(x)=(x+5)(x+2)$
3)

4)

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	-2
0	-5
1	-6
2	-5
3	-2

5. Which statement is true about the quadratic functions $g(x)$, shown in the table below, and $f(x)=(x-3)^{2}+2$?

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
0	4
1	-1
2	-4
3	-5
4	-4
5	-1
6	4

1) They have the same vertex.
2) They have the same zeros.
3) They have the same axis of symmetry.
4) They intersect at two points.
6. Which quadratic function has the largest maximum over the set of real numbers?
1) $f(x)=-x^{2}+2 x+4$
2) $g(x)=-(x-5)^{2}+5$
3)

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
-1	-1
0	3
1	5
2	5
3	3
4	-1

4)

\mathbf{x}	$\mathbf{h}(\mathbf{x})$
-2	-9
-1	-3
0	1
1	3
2	3
3	1

7. Three functions are shown below.

Which statement is true?

1) The y-intercept for $h(x)$ is greater than the y-intercept for $f(x)$.
2) The y-intercept for $f(x)$ is greater than the y-intercept for $g(x)$.
3) The y-intercept for $h(x)$ is greater than the y-intercept for both $g(x)$ and $f(x)$.
4) The y-intercept for $g(x)$ is greater than the y-intercept for both $f(x)$ and $h(x)$.
8. The function $h(x)$, which is graphed below, and the function $g(x)=2|x+4|-3$ are given.

Which statements about these functions are true?
I. $g(x)$ has a lower minimum value than $h(x)$.
II. For all values of $x, h(x)<g(x)$.
III. For any value of $x, g(x) \neq h(x)$.

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

Sequences:

Arithmetic: add a constant difference, Geometric: multiply by a common ratio Explicit Formulas (From Reference Sheet)
Arithmetic: $a_{n}=a_{1}+(n-1) d \quad$ Geometric: $a_{n}=a_{1}(r)^{n-1}$

Recursive Formula

$a_{1}=$
$a_{n}=a_{n-1}$

1. Write an explicit AND recursive equation for the following sequence and find the tenth term. $19,16,13,10 \ldots$
2. Write an explicit AND recursive equation for the following sequence and find the ninth term. $2,8,32,128, \ldots$
3. Write an explicit AND recursive equation for the following sequence and find the eighth term. $2,6,18,54, \ldots$
4. Write an explicit AND recursive equation for the following sequence and find the 20th term. 63, 57, 51, 45, ...
5. Write an explicit AND recursive equation for the following sequence and find the 7th term. 3, -12, 48, -192, ...
6. The diagrams below represent the first three terms of a sequence.

Assuming the pattern continues, which formula determines a_{n}, the number of shaded squares in the nth term?

1) $a_{n}=4 n+12$
2) $a_{n}=4 n+8$
3) $a_{n}=4 n+4$
4) $a_{n}=4 n+2$

Term 2

Term 3
7. Given the pattern below, which recursive formula represents the number of triangles in this sequence?

1) $y=2 x+3$
2) $a_{1}=2$ $a_{n}=a_{n-1}+3$
3) $y=3 x+2$
4) $a_{1}=3$ $a_{n}=a_{n-1}+2$
8. Which function defines the sequence $-6,-10,-14,-18, \ldots$, where $f(6)=-26$?
1) $f(x)=-4 x-2$
2) $f(x)=4 x-2$
3) $f(x)=-x+32$
4) $f(x)=x-26$
9. In a sequence, the first term is 4 and the common difference is 3 . The fifth term of this sequence is
1) -11
2) -8
3) 16
4) 19
10. In a geometric sequence, the first term is 4 and the common ratio is -3 . The fifth term of this sequence is
1) 324
2) 108
3) -108
4) -324

Sequences with Non-Consecutive Terms

Write out the terms and guess and check!

1. Determine the common difference of the arithmetic sequence in which $a_{1}=3$ and $a_{4}=15$.
2. The fifth term in an arithmetic sequence is 8 and the ninth term is 28 . Find the common difference.
3. The first term in a sequence is 5 and the fifth term is 17 . What is the common difference?
1) 2.4
2) 12
3) 3
4) 4
4. The third term in an arithmetic sequence is 10 and the fifth term is 26 . If the first term is a_{1}, which is an equation for the nth term of this sequence?
1) $a_{n}=8 n+10$
2) $a_{n}=8 n-14$
3) $a_{n}=16 n+10$
4) $a_{n}=16 n-38$
5. The 2 nd term in a geometric sequence is 10 and the $6^{\text {th }}$ term is 2560 . Which is an equation for the nth term of this sequence?
1) $a_{n}=10(4)^{n-1}$
2) $a_{n}=10(2)^{n-1}$
3) $a_{n}=2(4)^{n-1}$
4) $a_{n}=2(2)^{n-1}$
6. What is a common ratio of the geometric sequence whose first term is 5 and third term is 245 ?
1) 7
2) 49
3) 120
4) 240
7. What is the fourth term of the geometric sequence whose third term is 20 and fifth term is 120 ?
1) 3
2) 60
3) 20
4) 70

Evaluating Recursive Sequences

a_{n-1} means the previous term!

1) Start with the term after the one they give you
2) Substitute the previous term in for a_{n-1}
n is the term that you are finding
$a_{n} \rightarrow a_{n-1}$ means the same thing as $a_{n+1} \rightarrow a_{n}$
1. Find the first 4 terms of the sequence $a_{n}=2 a_{n-1}+4$ where a $a_{1}=3$.
2. Find the first 4 terms of the recursive sequence $\begin{aligned} & a_{1}=-3 \\ & a_{n}=4-3 a_{n-1}\end{aligned}$
3. If $a_{n}=3 a_{n-1}-4$ and $a_{1}=9$, find a_{5}
4. If $f(1)=3$ and $f(n)=-2 f(n-1)+1$, then $f(5)=$
1) -5
2) 11
3) 21
4) 43
5. Write the first five terms of the recursive sequence defined below.
$a_{1}=0$
$a_{n}=2\left(a_{n-1}\right)^{2}-1$, for $n>1$
6. Find the first four terms of the recursive sequence defined below.
$a_{1}=-3$
$a_{n}=a_{(n-1)}-n$
7. If $a_{n}=n\left(a_{n-1}\right)$ and $a_{1}=1$, what is the value of a_{s} ?
1) 5
2) 20
3) 120
4) 720
8. A sequence is defined recursively by $f(1)=16$ and $f(n)=f(n-1)+2 n$. Find $f(4)$.
(1) 32
(2) 30
(3) 28
(4) 34
9. Given the function $f(n)$ defined by the following: $f(1)=2$
1) $\{2,4,6,8, \ldots\}$
2) $\{2,-8,42,-208, \ldots\}$
3) $\{-8,-42,-208,1042, \ldots\}$
4) $\{-10,50,-250,1250, \ldots\}$
10. A recursively defined sequence is shown below. $a_{1}=5$ The value of a_{4} is
1) -9
2) -1
3) 8
4) 15
11. Find the third term in the recursive sequence $a_{\ell+1}=2 a_{k}-1$, where $a_{1}=3$.
12. If a sequence is defined recursively by $f(0)=2$ and $f(n+1)=-2 f(n)+3$ for $n \geq 0$, find $f(2)$.

Regression Equations

Turn Stat Diagnostics On (Mode, STATDIAGNOSTICS ON)
To write regression equations:

1) Stat, Edit
2) Stat, Calc, 4: LinReg or 0: ExpReg
r is the correlation coefficient. Negative slope has negative correlation coefficient, positive slope has positive correlation coefficient.
The closer the correlation coefficient is to 1 or -1 , the stronger the correlation. The closer the correlation coefficient is to 0 , the weaker the correlation is.
Read and round carefully! You may be asked to round to different values within different parts of the same question.
1. Which of the following correlation coefficients represents the strongest linear relationship?
(1) 0.79
(2) 0.36
(3) 0.12
(4) -0.87
2. Bella recorded data and used her graphing calculator to find the equation for the line of best fit. She then used the correlation coefficient to determine the strength of the linear fit. Which correlation coefficient represents the strongest linear relationship?
1) 0.9
2) 0.5
3) -0.3
4) -0.8
3. The results of a linear regression are shown below.

Which phrase best describes the relationship between x and y ?

1) strong negative correlation
2) weak negative correlation
3) strong positive correlation
4) weak positive correlation

$$
\begin{aligned}
& y=a x+b \\
& a=-1.15785 \\
& b=139.3171772
\end{aligned}
$$

$$
r=-0.896557832
$$

$$
r^{2}=0.8038159461
$$

4. Which calculator output shows the strongest linear relationship between x and y ?
(1)
Lin Reg
$y=a+b x$
$a=59.026$
$b=6.767$
(2) $\begin{aligned} & \mathrm{Lin} \text { Reg } \\ & y=a+b x \\ & a=.7 \\ & b=24.2 \\ & r\end{aligned}$
(3) $\begin{aligned} & \mathrm{Lin} \operatorname{Reg} \\ & \left.\begin{array}{l}y=a+b x \\ a\end{array}\right)=2.45 \\ & b=.95 \\ & r\end{aligned}=.6022 \mathrm{l}$
(4) Lin Reg
$y=a+b x$
$a=-2.9$
$r=-.8924$

-

5. Analysis of data from a statistical study shows a linear relationship in the data with a correlation coefficient of -0.524 . Which statement best summarizes this result?
1) There is a strong positive correlation between the variables.
2) There is a strong negative correlation between the variables.
3) There is a moderate positive correlation between the variables.
4) There is a moderate negative correlation between the variables.
6. What is the correlation coefficient of the linear fit of the data shown below, to the nearest hundredth?
1) 1.00
2) 0.93
3) -0.93
4) -1.00

7. The percentage of students scoring 85 or better on a mathematics final exam and an English final exam during a recent school year for seven schools is shown in the table below. Write the linear regression equation for these data, rounding all values to the nearest hundredth. State the correlation coefficient of the linear regression equation, to the nearest hundredth. Explain the meaning of this value in the context of these data.

Percentage of Students Scoring 85 or Better	
Mathematics, \mathbf{x}	English, \mathbf{y}
27	46
12	28
13	45
10	34
30	56
45	67
20	42

8. Using a microscope, a researcher observed and recorded the number of bacteria spores on a large sample of uniformly sized pieces of meat kept at room temperature. A summary of the data she recorded is shown in the table below. Using these data, write an exponential regression equation, rounding all values to the nearest thousandth. The researcher knows that people are likely to suffer from food-borne illness if the number of spores exceeds 100.

Hours (x)	Average Number of Spores (y)
0	4
0.5	10
1	15
2	60
3	260
4	1130
6	16,380

9. Omar has a piece of rope. He ties a knot in the rope and measures the new length of the rope. He then repeats this process several times. Some of the data collected are listed in the table below. State, to the nearest tenth, the linear regression equation that approximates the length, y, of the rope after tying x knots. Explain what the y-intercept means in the context of the problem. Explain what the slope means in the context of the problem.

Number of Knots	4	5	6	7	8
Length of Rope (cm)	64	58	49	39	31

10. At Mountain Lakes High School, the mathematics and physics scores of nine students were compared as shown in the table below. State the correlation coefficient, to the nearest hundredth, for the line of best fit for these data. Explain what the correlation coefficient means with regard to the context of this situation.

Mathematics	55	93	89	60	90	45	64	76	89
Physics	66	89	94	52	84	56	66	73	92

11. The data table below shows the median diameter of grains of sand and the slope of the beach for 9 naturally occurring ocean beaches. Write the linear regression equation for this set of data, rounding all values to the nearest thousandth. Using this equation, predict the slope of a beach, to the nearest tenth of a degree, on a beach with grains of sand having a median diameter of 0.65 mm .

Median Diameter of Grains of Sand, in Millimeters (x)	0.17	0.19	0.22	0.235	0.235	0.3	0.35	0.42	0.85
Slope of Beach, in Degrees (y)	0.63	0.7	0.82	0.88	1.15	1.5	4.4	7.3	11.3

12. Erica, the manager at Stellarbeans, collected data on the daily high temperature and revenue from coffee sales. Data from nine days this past fall are shown in the table below. State the linear regression function, $f(t)$, that estimates the day's coffee sales with a high temperature of t. Round all values to the nearest integer. State the correlation coefficient, r, of the data to the nearest hundredth. Does r indicate a strong linear relationship between the variables? Explain your reasoning.

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
High Temperature, t	54	50	62	67	70	58	52	46	48
Coffee Sales, $\mathbf{f}(\mathbf{t})$	$\$ 2900$	$\$ 3080$	$\$ 2500$	$\$ 2380$	$\$ 2200$	$\$ 2700$	$\$ 3000$	$\$ 3620$	$\$ 3720$

13. The data given in the table below show some of the results of a study comparing the height of a certain breed of dog, based upon its mass. Write the linear regression equation for these data, where x is the mass and y is the height. Round all values to the nearest tenth. State the value of the correlation coefficient to the nearest tenth, and explain what it indicates.

Mass (kg)	4.5	5	4	3.5	5.5	5	5	4	4	6	3.5	5.5
Height (cm)	41	40	35	38	43	44	37	39	42	44	31	30

14. An application developer released a new app to be downloaded. The table below gives the number of downloads for the first four weeks after the launch of the app.
Write an exponential equation that models these data. Use this model to predict how many downloads the developer would expect in the 26th week if this trend continues. Round your answer to the nearest download.

Number of Weeks	1	2	3	4
Number of Downloads	120	180	270	405

15. Emma recently purchased a new car. She decided to keep track of how many gallons of gas she used on five of her business trips. The results are shown in the table below. Write the linear regression equation for these data where miles driven is the independent variable. (Round all values to the nearest hundredth.)

Miles Driven	Number of Gallons Used
150	7
200	10
400	19
600	29
1000	51

16. A nutritionist collected information about different brands of beef hot dogs. She made a table showing the number of Calories and the amount of sodium in each hot dog.
a) Write the correlation coefficient for the line of best fit. Round your answer to the nearest hundredth.
b) Explain what the correlation coefficient suggests in the context of this problem.

Calories per Beef Hot Dog	Milligrams of Sodium per Beef Hot Dog
186	495
181	477
176	425
149	322
184	482
190	587
158	370
139	322

Residual Plots

Residual is actual - predicted, but that is generally given to you.
Plot the x column and the residual column
Good fit: Points are randomly scattered above and below the x -axis.
Bad Fit: There is a pattern (likely a parabola).

1. Which statistic would indicate that a linear function would not be a good fit to model a data set?
(1) $r=-0.93$
(2) $r=1$
(3)

(4)

2. The residual plots from two different sets of bivariate data are graphed below. Explain, using evidence from graph A and graph B, which graph indicates that the model for the data is a good fit.

3. After performing analyses on a set of data, Jackie examined the scatter plot of the residual values for each analysis. Which scatter plot indicates the best linear fit for the data?
1)

3)

2)

4)

4. Use the data below to write the regression equation $(y=a x+b)$ for the raw test score based on the hours tutored. Round all values to the nearest hundredth.

Tutor Hours, x	Raw Test Score	Residual (Actual - Predicted)
1	30	1.3
2	37	1.9
3	35	-6.4
4	47	-0.7
5	56	2.0
6	67	6.6
7	62	-4.7

Equation: \qquad
Create a residual plot on the axes below, using the residual scores in the table above.

Based on the residual plot, state whether the equation is a good fit for the data. Justify your answer.
5. The table below represents the residuals for a line of best fit. Plot these residuals on the set of axes below. Using the plot, assess the fit of the line for these residuals and justify your answer.

\boldsymbol{x}	2	3	3	4	6	7	8	9	9	10
Residual	2	1	-1	-2	-3	-2	-1	2	0	3

6. Justin recently opened a new on-line business selling custom photo frames. During the first eight weeks of business he recorded the number of frames he sold weekly in the first two columns of the accompanying table. He also calculated the residual scores, rounded to the nearest integer, and recorded them in the third column of the table.
a) Write the linear regression equation, $y=a x+b$, for the weekly number of photo frames sold, rounding all values to the nearest hundredth.
b) Justin wants to determine if he chose the best type of regression to model the data. Create a residual plot on the accompanying axes, and determine if the equation is a good fit for the data.
Justify your answer.

Week	Number of Photo Frames Sold	Residual
(x)	(y)	
1	11	55
2	17	18
3	28	-15
4	46	-40
5	75	-54
6	123	-50
7	227	10
8	338	78

Probability with Two Way Tables

Conditional Probabilities: Circle the row/column that contains the condition. Condition always comes after the phrase given that. You will not always see the phrase given that.
"And" is not conditional.
One-hundred employees of a company were asked their opinion on paying high salaries to the CEO. Their responses are summarized in the following contingency table. Express the following probabilities as fractions and rounded to the nearest percent.

	In Favor	Against
Male	15	45
Female	4	36

1. P (male and in favor)
2. P (female and against)
3. P (male)
4. P (in favor)
5. P (male given that in favor)
6. P (against given that male)
7. P (in favor given that male)
8. P(female given that against)
9. Probability a male is in favor
10. Probability a female is against
11. A statistics class surveyed some students during one lunch period to obtain opinions about television programming preferences. The results of the survey are summarized in the table below. What percentage of the school's male students would prefer comedy?

Programming Preferences

	Comedy	Drama
Male	70	35
Female	48	42

12. A public opinion poll was taken to explore the relationship between age and support for a candidate in an election. The results of the poll are summarized in the table below.

Age	For	Against	No Opinion
$21-40$	30	12	8
$41-60$	20	40	15
Over 60	25	35	15

What percent of the 21-40 age group was for the candidate?

1) 15
2) 25
3) 40
4) 60
13. A radio station did a survey to determine what kind of music to play by taking a sample of middle school, high school, and college students. They were asked which of three different types of music they prefer on the radio: hip-hop, alternative, or classic rock. The results are summarized in the table below.
What percentage of college students prefer classic rock?

	Hip-Hop	Alternative	Classic Rock
Middle School	28	18	4
High School	22	22	6
College	16	20	14

What percentage of the students that prefer classic rock are college students?
14. A survey about television-viewing preferences was given to randomly selected freshmen and seniors at Fairport High School. The results are shown in the table below.

Favorite Type of Program			
	Sports	Reality Show	Comedy Series
Senior	83	110	67
Freshmen	119	103	54

A student response is selected at random from the results. State the exact probability the student response is from a freshman, given the student prefers to watch reality shows on television.
15. At Berkeley Central High School, a survey was conducted to see if students preferred cheeseburgers, pizza, or hot dogs for lunch. The results of this survey are shown in the table below.

	Cheeseburgers	Pizza	Hot Dogs
Females	32	44	24
Males	36	30	34

Based on this survey, what percent of the students preferred pizza?

1) 30
2) 37
3) 44
4) 74
16. A middle school conducted a survey of students to determine if they spent more of their time playing games or watching videos on their tablets. The results are shown in the table below.

	Playing Games	Watching Videos	Total
Boys	138	46	184
Girls	54	142	196
Total	192	188	380

Of the students who spent more time playing games on their tablets, approximately what percent were boys?

1) 41
2) 56
3) 72
4) 75
17. A survey was given to 12th-grade students of West High School to determine the location for the senior class trip. The results are shown in the table below.

	Niagara Falls	Darien Lake	New York City
Boys	56	74	103
Girls	71	92	88

To the nearest percent, what percent of the boys chose Niagara Falls?

1) 12
2) 24
3) 44
4) 56
18. Jenna took a survey of her senior class to see whether they preferred pizza or burgers. The results are summarized in the table below.

	Pizza	Burgers
Male	23	42
Female	31	26

Of the people who preferred burgers, approximately what percentage were female?

1) 21.3
2) 38.2
3) 45.6
4) 61.9
19. Students were asked to name their favorite sport from a list of basketball, soccer, or tennis. The results are shown in the table below.

	Basketball	Soccer	Tennis
Girls	42	58	20
Boys	84	41	5

What percentage of the students chose soccer as their favorite sport?

1) 39.6%
2) 41.4%
3) 50.4%
4) 58.6%

Box Plots

The first dash is the minimum
The second dash in the first (lower) quartile
The third dash is the median (second quartile)
The fourth dash is the third (upper) quartile
The fifth dash is the maximum
Range $=$ maximum - minimum
Interquartile Range $=$ Q3 - Q1
Each section is 25% of the data

1. For the set of data below, find the lower quartile, median, upper quartile, interquartile range, and range.

2. For the set of data below, find the lower quartile, median, upper quartile, interquartile range, and range.

3. The box plot below summarizes the data for the average monthly high temperatures in degrees Fahrenheit for Orlando, Florida.
The third quartile is
1) 92
2) 90
3) 83
4) 71

4. What is the range of the data represented in the box-and-whisker plot shown below?
1) 40
2) 45
3) 60
4) 100

5. Based on the box-and-whisker plot below, which statement is false?
1) The median is 7 .
2) The range is 12 .
3) The first quartile is 4 .
4) The third quartile is 11 .

6. The box-and-whisker plot shown below represents the number of magazine subscriptions sold by members of a club.
Which statistical measures do points B, D, and E represent, respectively?
1) minimum, median, maximum
2) first quartile, median, third quartile
3) first quartile, third quartile, maximum
4) median, third quartile, maximum

7. A movie theater recorded the number of tickets sold daily for a popular movie during the month of June. The box-and-whisker plot shown below represents the data for the number of tickets sold, in hundreds.

Which conclusion can be made using this plot?

1) The second quartile is 600 .
2) The range of the attendance is 300 to 600.
3) The mean of the attendance is 400 .
4) Twenty-five percent of the attendance is between 300 and 400 .
8. The box-and-whisker plot below represents a set of grades in a college statistics class.

Which interval contains exactly 50% of the grades?

1) $63-88$
2) $63-95$
3) $75-81$

4) $75-88$
9. The test scores from Mrs. Gray's math class are shown below. Construct a box-and-whisker plot to display these data.
$72,73,66,71,82,85,95,85,86,89,91,92$

10. Robin collected data on the number of hours she watched television on Sunday through Thursday nights for a period of 3 weeks. The data are shown in the table below. Using an appropriate scale on the number line below, construct a box plot for the 15 values.

	Sun	Mon	Tues	Wed	Thurs
Week 1	4	3	3.5	2	2
Week 2	4.5	5	2.5	3	1.5
Week 3	4	3	1	1.5	2.5

Measures of Central Tendency

Stat, Edit
Stat, Calc, 1-Var Stats
*If there is a frequency column/histogram, put L_{2} into FreqList
$\bar{x}=$ mean
$\sigma=s \tan$ dard deviation
Med = Median
Range $=$ maximum - minimum
Q1 = Lower Quartile
Q3 = Upper Quartile
Interquartile Range: Q3 - Q1
Mode $=$ number that occurs the most (not given in calculator)
The greatest spread/variability has the greatest range.

1. Sara's test scores in mathematics were $64,80,88,78,60,92,84,76,86,78,72$, and 90. Determine the mean, the median, lower quartile, upper quartile, range, interquartile range, population standard deviation, and the mode of Sara's test scores.
2. Mickayla's test scores in social studies were $84,77,63,72,90,71,75,76,77,81,78$, and 80 . Determine the mean, the median, lower quartile, upper quartile, range, interquartile range, population standard deviation, and the mode of Mickayla's test scores.
3. In the table, the data indicates the heights, in inches, of basketball players.

What is the mean, median, mode, population standard deviation, range, and interquartile range for this set of data? How many students are on this basketball team?

Height (Inches)	Frequency
77	2
76	0
75	5
74	3
73	4
72	2
71	1

4. The following histogram represents the test scores of students in a class. What is the mean, median, mode, population standard deviation, range, and interquartile range for this set of data? How many students are in the class?

5. The table below represents the time taken, in minutes, to eat breakfast. For this set of data, find the mean, median, mode, population standard deviation, range, and interquartile range. How many people were involved in this study?

6. The following data represents the number of gallons of paint in a paint order in a given day. For this set of data, find the mean, median, mode, population standard deviation, range, and interquartile range. How many paint orders were placed on this day?

7. Which statement is true about the data set $3,4,5,6,7,7,10$?
1) mean $=$ mode
2) mean $=$ median
3) mean $>$ mode
4) mean $<$ median
8. The following are Regents scores in a math class.

59	56	64	69	55
67	55	57	55	68
64	69	65	71	45

Which of the following statement is true?

1) mean $<$ mode
2) standard deviation = range
3) mode $=$ lower quartile
4) interquartile range $=$ standard deviation
9. The two sets of data below represent the number of runs scored by two different youth baseball teams over the course of a season.

Team $A: 4,8,5,12,3,9,5,2$
Team B: 5, 9, 11, 4, 6, 11, 2, 7
Which set of statements about the mean and standard deviation is true?

1) mean $A<$ mean B
standard deviation $A>$ standard deviation B
2) mean $A>$ mean B
standard deviation $A<$ standard deviation B
3) mean $A<$ mean B
standard deviation $A<$ standard deviation B
4) mean $A>$ mean B
standard deviation $A>$ standard deviation B
10. Christopher looked at his quiz scores shown below for the first and second semester of his Algebra class.
Semester 1: 78, 91, 88, 83, 94
Semester 2: 91, 96, 80, 77, 88, 85, 92
Which statement about Christopher's performance is correct?
1) The interquartile range for semester 1 is greater than the interquartile range for semester 2.
2) The median score for semester 1 is greater than the median score for semester 2.
3) The mean score for semester 2 is greater than the mean score for semester 1.
4) The third quartile for semester 2 is greater than the third quartile for semester 1 .
11. The 15 members of the French Club sold candy bars to help fund their trip to Quebec. The table below shows the number of candy bars each member sold.

Number of Candy Bars Sold				
0	35	38	41	43
45	50	53	53	55
68	68	68	72	120

When referring to the data, which statement is false?

1) The mode is the best measure of
2) The median is 53 . central tendency for the data.
3) The data have two outliers.
4) The range is 120 .
12. The following table shows the heights, in inches, of the players on the opening-night roster of the 2015-2016 New York Knicks.

84	80	87	75	77	79	80	74	76	80	80	82	82

The population standard deviation of these data is approximately

1) 3.5
2) 13
3) 79.7
4) 80
13. The ages of the last 16 United States presidents on their first inauguration day are shown in the table below. Determine the interquartile range for this set of data.

51	54	51	60
62	43	55	56
61	52	69	64
46	54	47	70

14. Different ways to represent data are shown below.

Which data representations have a median of 2 ?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

15. Donna and Andrew compared their math final exam scores from grade 8 through grade 12. Their scores are shown below.

Donna	
8th	90
9th	92
10th	87
11th	94
12th	95

Andrew	
8th	78
9th	96
10th	87
11th	94
12th	93

Which statement about their final exam scores is correct?

1) Andrew has a higher mean than Donna.
2) Andrew has a larger interquartile range than Donna.
3) Donna and Andrew have the same median.
4) The 3rd quartile for Donna is greater than the 3rd quartile for Andrew.
16. Santina is considering a vacation and has obtained high-temperature data from the last two weeks for Miami and Los Angeles. Which location has the least variability in temperatures? Explain how you arrived at your answer.

Miami	76	75	83	73	60	66	76
	81	83	85	83	87	80	80

Los Angeles	74	63	65	67	65	65	65
	62	62	72	69	64	64	61

17. The students in Mrs. Lankford's 4th and 6th period Algebra classes took the same test. The results of the scores are shown in the following table:

	\bar{x}	σ_{x}	\boldsymbol{n}	$\boldsymbol{\operatorname { m i n }}$	Q_{1}	med	Q_{3}	$\boldsymbol{\operatorname { m a x }}$
4th Period	77.75	10.79	20	58	69	76.5	87.5	96
6th Period	78.4	9.83	20	59	71.5	78	88	96

Based on these data, which class has the larger spread of test scores? Explain how you arrived at your answer.
18. The heights, in inches, of 12 students are listed below.
61,67,72,62,65,59,60,79,60,61,64,63

Which statement best describes the spread of these data?

1) The set of data is evenly spread.
2) The median of the data is 59.5 .
3) The set of data is skewed because 59 is the only value below 60 .
4) 79 is an outlier, which would affect the standard deviation of these data.
19. Noah conducted a survey on sports participation. He created the following two dot plots to represent the number of students participating, by age, in soccer and basketball.

Which statement about the given data sets is correct?

1) The data for soccer players are skewed right.
2) The data for soccer players have less spread than the data for basketball players.
3) The data for basketball players have the same median as the data for soccer players.
4) The data for basketball players have a greater mean than the data for soccer players.

> Soccer Players' Ages

Causal
 Two events are causal if one causes the other to happen

1. Which situation describes a correlation that is not a causal relationship?
1) The rooster crows, and the Sun rises.
2) The more miles driven, the more gasoline needed
3) The more powerful the microwave, the faster the food cooks.
4) The faster the pace of a runner, the quicker the runner finishes.
2. Which situation describes a correlation that is a causal relationship?
1) The taller a person, the smarter they are.
2) The bigger a person's feet are, the bigger shoes they wear.
3) The bigger a person's fingernails, the faster they can throw a baseball.
4) The longer a person's hair is, the more hats they wear.
3. Which relationship can best be described as causal?
1) height and intelligence
2) shoe size and running speed
3) number of correct answers on a test and test score
4) number of students in a class and number of students with brown hair
4. Which situation describes a correlation that is not a causal relationship?
1) the length of the edge of a cube and the volume of the cube
2) the distance traveled and the time spent driving
3) the age of a child and the number of siblings the child has
4) the number of classes taught in a school and the number of teachers employed
5. Which situations described is not a causal relationship?
1) The number of baskets a team scores and their total amount of points
2) The number of points you score on a test and your test average
3) The amount of time you spend driving and the type of car you drive
4) The faster you run a race the sooner you finish

Unit Conversions

CONVERSIONS

1 inch $=2.54$ centimeters	1 kilometer $=0.62$ mile	1 cup $=8$ fluid ounces
1 meter $=39.37$ inches	1 pound $=16$ ounces	1 pint $=2$ cups
1 mile $=5280$ feet	1 pound $=0.454$ kilograms	1 quart $=2$ pints
1 mile $=1760$ yards	1 kilogram $=2.2$ pounds	1 gallon $=4$ quarts
1 mile $=1.609$ kilometers	1 ton $=2000$ pounds	1 gallon $=3.785$ liters
		1 liter $=0.264$ gallon
	1 liter $=1000$ cubic centimeters	

To cancel out units, multiply by the conversion. The unit to cancel should have one on top and one on bottom. For a rate, the final units is the remaining top unit per the remaining bottom unit.

Convert the following units and round to the nearest tenth if necessary

1. 750 meter to kilometer 2. 220 centimeter to meter
2. 3.45 meter to centimeter
3. 1.2 hours to minutes
4. 6.2 miles to feet
5. 5000 feet to miles
6. 4 gallons to kiloliters
7. 2.4 feet to centimeters

Convert the following rates and round to the nearest tenth if necessary

$9.100 \mathrm{~km} /$ hour to miles/minute
10. 500 meters/second to kilometers/minute
11. 12 gallons/second to liters/minute
12. 15 yards/hours to $\mathrm{ft} /$ minute
13. $50 \mathrm{ft} / \mathrm{sec}$ to miles/hour
14. 15 kilometers/sec to miles/hour

15. $20 \mathrm{~cm} /$ minute to feet $/$ second

16. 200 kilometers/hour to miles/second
17. The Utica Boilermaker is a 15 -kilometer road race. Sara is signed up to run this race and has done the following training runs:
I. 10 miles
II. 44,880 feet
III. 15,560 yards

Which run(s) are at least 15 kilometers?

1) I, only
2) I and III
3) II, only
4) II and III
18. Sarah travels on her bicycle at a speed of 22.7 miles per hour. What is Sarah's approximate speed, in kilometers per minute?
1) 0.2
2) 0.6
3) 36.5
4) 36.6
19. A news report suggested that an adult should drink a minimum of 4 pints of water per day. Based on this report, determine the minimum amount of water an adult should drink, in fluid ounces, per week.
20. Bamboo plants can grow 91 centimeters per day. What is the approximate growth of the plant, in inches per hour?
1) 1.49
2) 3.79
3) 9.63
4) 35.83
21. A typical marathon is 26.2 miles. Allan averages 12 kilometers per hour when running in marathons. Determine how long it would take Allan to complete a marathon, to the nearest tenth of an hour. Justify your answer.
22. A swimmer set a world record in the women's 1500 -meter freestyle, finishing the race in 15.42 minutes. If 1 meter is approximately 3.281 feet, which set of calculations could be used to convert her speed to miles per hour?
1) $\frac{1500 \text { meters }}{15.42 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \text { hour }} \cdot \frac{1 \text { meter }}{3.281 \text { feet }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$
2) $\frac{1500 \text { meters }}{15.42 \text { min }} \bullet \frac{60 \mathrm{~min}}{1 \text { hour }} \bullet \frac{3.281 \text { feet }}{1 \text { meter }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$
3) $\frac{1500 \text { meters }}{15.42 \mathrm{~min}} \cdot \frac{3.281 \text { feet }}{1 \text { meter }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$
4) $\frac{1500 \text { meters }}{15.42 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \text { hour }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$
23. It takes Tim 4.5 hours to run 50 kilometers. Which expression will allow him to change this rate to minutes per mile?
1) $\frac{4.5 \mathrm{hr}}{50 \mathrm{~km}} \cdot \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
2) $\frac{50 \mathrm{~km}}{4.50 \mathrm{hr}} \bullet \frac{1 \mathrm{mi}}{1.609 \mathrm{~km}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
3) $\frac{50 \mathrm{~km}}{4.50 \mathrm{hr}} \cdot \frac{1 \mathrm{mi}}{1.609 \mathrm{~km}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
4) $\frac{4.5 \mathrm{hr}}{50 \mathrm{~km}} \cdot \frac{1 \mathrm{mi}}{1.609 \mathrm{~km}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
24. A construction worker needs to move $120 \mathrm{ft}^{3}$ of dirt by using a wheelbarrow. One wheelbarrow load holds $8 \mathrm{ft}^{3}$ of dirt and each load takes him 10 minutes to complete. One correct way to figure out the number of hours he would need to complete this job is
1) $\frac{120 \mathrm{ft}^{3}}{1} \cdot \frac{10 \mathrm{~min}}{1 \text { load }} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{1 \text { load }}{8 \mathrm{ft}^{3}}$
2) $\frac{120 \mathrm{ft}^{3}}{1} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{8 \mathrm{ft}^{3}}{10 \mathrm{~min}} \cdot \frac{1}{1 \text { load }}$
3) $\frac{120 \mathrm{ft}^{3}}{1} \cdot \frac{1 \text { load }}{10 \min } \cdot \frac{8 \mathrm{ft}^{3}}{1 \text { load }} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
4) $\frac{120 \mathrm{ft}^{3}}{1} \cdot \frac{1 \text { load }}{8 \mathrm{ft}^{3}} \cdot \frac{10 \mathrm{~min}}{1 \text { load }} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
25. The following conversion was done correctly:

$$
\frac{3 \text { miles }}{1 \text { hour }} \cdot \frac{1 \text { hour }}{60 \text { minutes }} \cdot \frac{5280 \text { feet }}{1 \text { mile }} \cdot \frac{12 \text { inches }}{1 \text { foot }}
$$

What were the final units for this conversion?

1) minutes per foot
2) feet per minute
3) minutes per inch
4) inches per minute
26. Olivia entered a baking contest. As part of the contest, she needs to demonstrate how to measure a gallon of milk if she only has a teaspoon measure. She converts the measurement using the ratios below:
Which ratio is incorrectly written in Olivia's conversion?

$$
\frac{4 \text { quarts }}{1 \text { gallon }} \cdot \frac{2 \text { pints }}{1 \text { quart }} \cdot \frac{2 \text { cups }}{1 \text { pint }} \cdot \frac{\frac{1}{4} \text { cup }}{4 \text { tablespoons }} \cdot \frac{3 \text { teaspoons }}{1 \text { tablespoon }}
$$

1) $\frac{4 \text { quarts }}{1 \text { gallon }}$
2) $\frac{1}{4}$ cup
4 tablespoons
3) $\frac{2 \text { pints }}{1 \text { quart }}$
4) $\frac{3 \text { teaspoons }}{1 \text { tablespoon }}$

Common Core High School Math Reference Sheet

 (Algebra I, Geometry, Algebra II)
CONVERSIONS

1 inch $=2.54$ centimeters	1 kilometer $=0.62$ mile	1 cup $=8$ fluid ounces
1 meter $=39.37$ inches	1 pound $=16$ ounces	1 pint $=2$ cups
1 mile $=5280$ feet	1 pound $=0.454$ kilograms	1 quart $=2$ pints
1 mile $=1760$ yards	1 kilogram $=2.2$ pounds	1 gallon $=4$ quarts
1 mile $=1.609$ kilometers	1 ton $=2000$ pounds	1 gallon $=3.785$ liters
		1 liter $=0.264$ gallon
	1 liter $=1000$ cubic centimeters	

FORMULAS

Triangle	$A=\frac{1}{2} b h$	Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$
Parallelogram	$A=b h$	Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Circle $A=\pi r^{2}$	Arithmetic Sequence	$a_{n}=a_{1}+(n-1) d$	
Circle $C=\pi d$ or $C=2 \pi r$	Geometric Sequence	$a_{n}=a_{1} r^{n-1}$	
General Prisms	$V=B h$	Geometric Series	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}$ where $r \neq 1$
Cylinder	$V=\pi r^{2} h$	Radians	1 deadian $=\frac{180}{\pi}$ degrees
Sphere	$V=\frac{4}{3} \pi r^{3}$	Degrees $=\frac{\pi}{180}$ radians	
Cone	$V=\frac{1}{3} \pi r^{2} h$	Exponential Growth/Decay	$A=A_{0} e^{k\left(t-t_{0}\right)}+B_{0}$
Pyramid			

