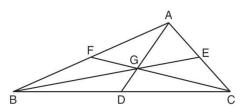
Name _____ Mr. Schlansky Date _____ Geometry

CCG Regents Review Homework 2025

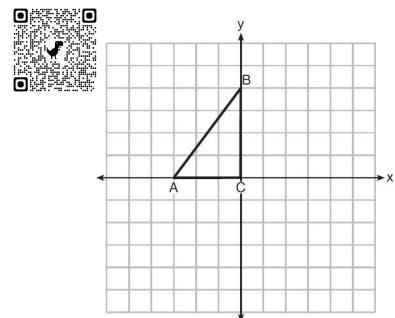
1. In $\triangle DEF$, $\angle F$ is the vertex angle. If $\overline{DF} = 5x + 4$, $\overline{DE} = 12x - 4$, and $\overline{EF} = 7x$, find \overline{DE} .

2. In ΔROY , $m \angle R = 50^{\circ}$ and $m \angle O = 95^{\circ}$. What is the largest side of ΔROY ? What is the smallest side of ΔROY ?

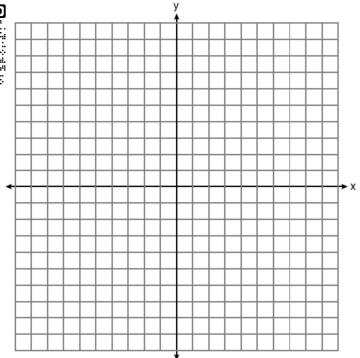
- 3. Which set of numbers represents the lengths of the sides of a triangle? 1) {5, 18, 13} 3) {16, 24, 7}
- 1) {5, 18, 13} 2) {6, 17, 22}


4. In $\triangle ABC$, AB = 5 feet and BC = 3 feet. Which *cannot* represent the value for the length of \overline{AC} , in feet?

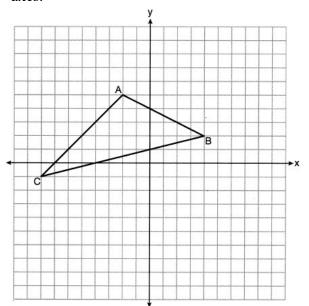
4) $\{26, 8, 15\}$


- 1) 3
- 2) 5
- 3) 7
- 4) 9

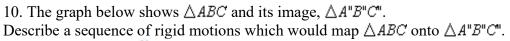
5. In the diagram below of $\triangle ABC$, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at G. If CF = 24, what is the length of \overline{FG} ?

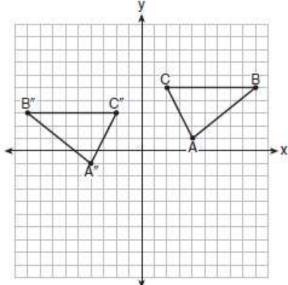


6. Triangle *ABC* is graphed on the set of axes below. Graph and label $\triangle A B'C'$, the image of $\triangle ABC$ after a reflection over the line x = 1.

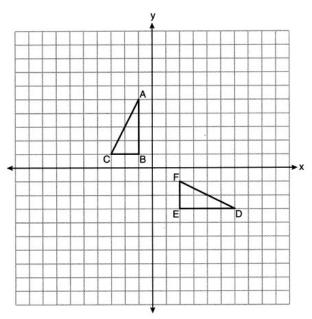

7. The coordinates of the vertices of $\triangle RST$ are R(-2, 3), S(4, 4), and T(2, -2). Graph $\triangle RST$ and $\triangle R'S'T'$, the image of $\triangle RST$ after a dilation of 3 centered at (1,2).

8. The triangle graphed below with vertices at A(-2,5), B(4,2), and C(-8,-1), is graphed on the set of axes below. A vertical stretch of scale factor 2 with respect to y = 0 is represented by $(x, y) \rightarrow (x, 2y)$. Graph the image of this triangle, after the vertical stretch on the same set of axes.

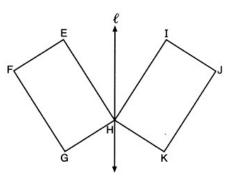

9. On the set of axes below, $\triangle LET$ and $\triangle L^{"}E^{"}T^{"}$ are graphed in the coordinate plane where $\triangle LET \cong \triangle L^{"}E^{"}T^{"}.$


Which sequence of rigid motions maps $\triangle LET$ onto $\triangle L"E"T"$?

- 1) a reflection over the 3) a rotation of 90° *y*-axis followed by a reflection over the x-axis
- 2) a rotation of 180° about the origin
- counterclockwise about the origin followed by a reflection over the *y*-axis
- 4) a reflection over the *x*-axis followed by a rotation of 90° clockwise about the origin



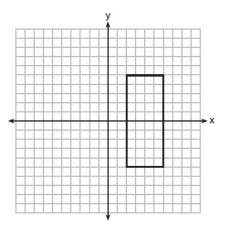
11. On the set of axes below, $\triangle ABC$ and $\triangle DEF$ are graphed. Describe a sequence of rigid motions that would map $\triangle ABC$ onto $\triangle DEF$.



12. If $\triangle A'B'C'$ is the image of $\triangle ABC$, under which transformation will the triangles *not* be congruent?1) reflection over the x-axis3) dilation centered at the origin with scale factor 22) translation to the left 5 and down 44) rotation of 270° counterclockwise about the origin

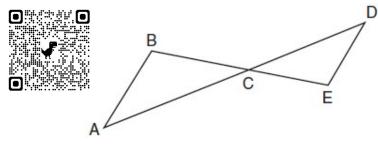
13. In the diagram below, parallelogram EFGH is mapped onto parallelogram IJKH after a reflection over line ℓ . Use the properties of rigid motions to explain why parallelogram EFGH is congruent to parallelogram IJKH.

14. Which rotation would map a regular hexagon onto itself?1) 45° 3) 240°

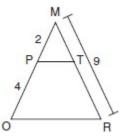


15. As shown in the graph below, the quadrilateral is a rectangle. Which transformation would *not* map the rectangle onto itself?

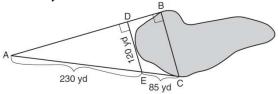
1) a reflection over the *x*-axis 3) a rotation of 180° about the

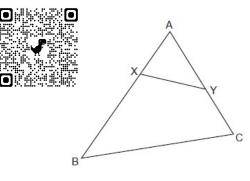

origin

2) a reflection over the line x = 4 4) a rotation of 180° about the point (4, 0)

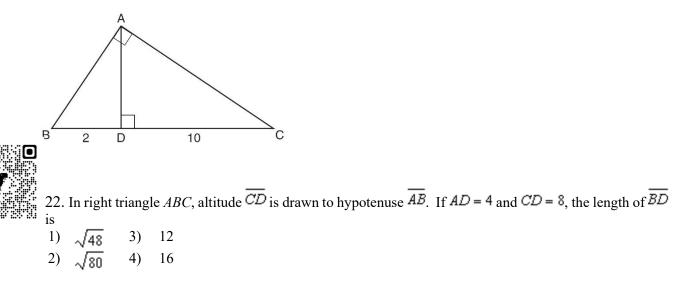

16. In the diagram below, \overline{AD} intersects \overline{BE} at *C*, and $\overline{AB} || \overline{DE}$. If CD = 6.6 cm, DE = 3.4 cm, CE = 4.2 cm, and BC = 5.25 cm, what is the length of \overline{AC} , to the *nearest hundredth of a centimeter*?

17. In $\triangle XYZ$, A is the midpoint of XY and B is the midpoint of YZ. If AB = 4x + 10 and XZ = 13x - 5, find AB.

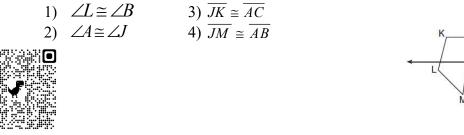

18. Given $\triangle MRO$ shown below, with trapezoid *PTRO*, MR = 9, MP = 2, and PO = 4. What is the length of \overline{TR} ?

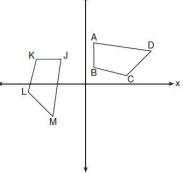


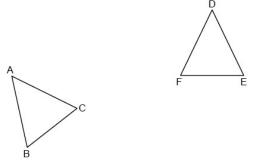
19. To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.


Use the surveyor's information to determine and state the distance from point B to point C, to the *nearest yard*.

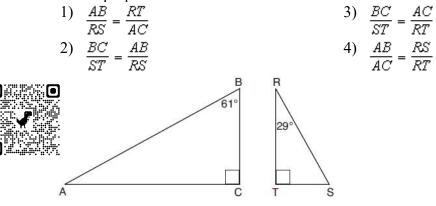
20. In the diagram below of $\triangle ABC$, X and Y are points on \overline{AB} and \overline{AC} , respectively, such that $m \angle AYX = m \angle B$. If $\overline{AX} = 2$, $\overline{AY} = 5$, and $\overline{YC} = 4$, find \overline{BX} .




21. Triangle *ABC* shown below is a right triangle with altitude \overline{AD} drawn to the hypotenuse \overline{BC} . If BD = 2 and DC = 10, what is the length of \overline{AB} to the *nearest tenth*?


23. In the diagram below, a sequence of rigid motions maps ABCD onto JKLM.

Which of the following statements must be true?

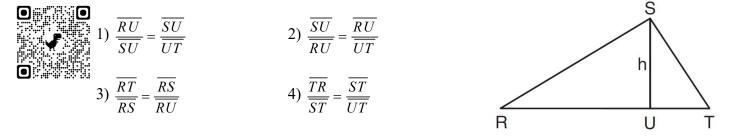


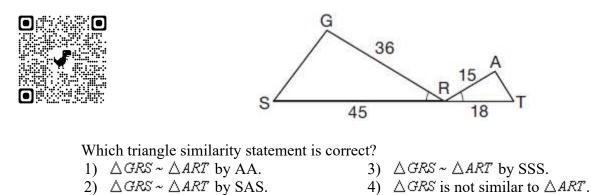
24. In the diagram below, ΔDEF is the image of ΔABC after a reflection. If AB=7, CB=5, $\overline{AC}=8$, and $\overline{DE}=5x-3$, find the value of x.

25. Given right triangle *ABC* with a right angle at *C*, $m \angle B = 61^\circ$. Given right triangle *RST* with a right angle at *T*, $m \angle R = 29^\circ$.

Which proportion in relation to $\triangle ABC$ and $\triangle RST$ is *not* correct?

26. In the diagram below of $\triangle ACT$, \overleftarrow{ES} is drawn parallel to \overline{AT} such that E is on \overline{CA} and S is on \overrightarrow{CT} .

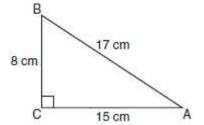

Which statement is always true?


 $\frac{1}{CA} = \frac{CS}{ST}$ $\frac{CE}{ES} = \frac{EA}{AT}$

3) $\frac{CE}{EA} = \frac{CS}{ST}$ 4) $\frac{CE}{ST} = \frac{EA}{CS}$

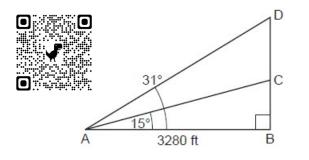
27. In right triangle *RST* below, altitude \overline{SU} is drawn to hypotenuse \overline{RT} . Which of the following proportions is *not* true?

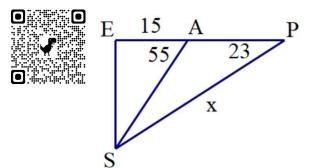
28. In the diagram below, $\angle GRS \cong \angle ART$, GR = 36, SR = 45, AR = 15, and RT = 18.


29. After a dilation with center (0, 0), the image of \overline{DB} is $\overline{D'B'}$. If DB = 4.5 and D'B' = 18, what is the scale factor of this dilation?

30. Triangle JOY has a perimeter of 10 and an area of 12. What is the perimeter and area of triangle JOY after a dilation by a scale factor of 2?

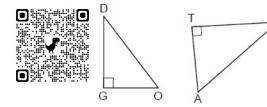
- 31. Which equation shows a correct trigonometric ratio for angle A in the right triangle below?
- 1) $\sin A = \frac{15}{17}$ 2) $\tan A = \frac{8}{17}$ 3) $\cos A = \frac{15}{17}$
- $\tan A = \frac{5}{2}$




32. A 28-foot ladder is leaning against a house. The bottom of the ladder is 6 feet from the base of the house. Find the measure of the angle formed by the ladder and the ground, to the *nearest degree*.

33. Cape Canaveral, Florida is where NASA launches rockets into space. As modeled in the diagram below, a person views the launch of a rocket from observation area A, 3280 feet away from launch pad B. After launch, the rocket was sighted at C with an angle of elevation of 15°. The rocket was later sighted at D with an angle of elevation of 31°. Determine and state, to the *nearest foot*, the distance the rocket traveled between the two sightings, C and D.

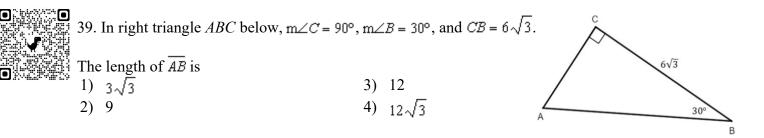
34. Find the measure of \overline{SP} in the diagram of right triangle SEP below to the nearest unit.



- 35. Right triangle *TMR* is a scalene triangle with the right angle at *M*. Which equation is true?
- 1) $\sin M = \cos T$ 2) $\sin R = \cos R$ 3) $\sin T = \cos R$ 4) $\sin T = \cos M$

1) 7 2) 15 3) 21	s(4x – 7)°, what is the v		
 4) 30 37. Which of the follo 1) sin 50 	owing is equivalent to 2) cos 50	sin 40? 3) cos 40	4) tan 50

38. In the diagram below, $\triangle DOG \sim \triangle CAT$, where $\angle G$ and $\angle T$ are right angles.



1

Which expression is always equivalent to $\sin D$?

1)	cosA	•	-	3)	tan A
2)	sin A			4)	$\cos C$

C

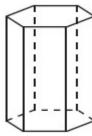
3) triangle

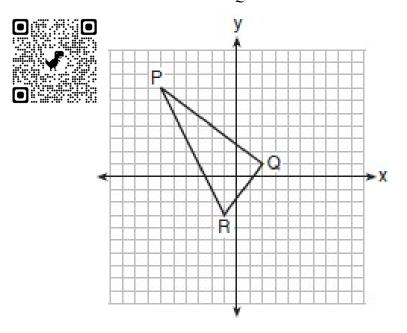
4) circle

40. A plane intersects a cylinder parallel to its bases.

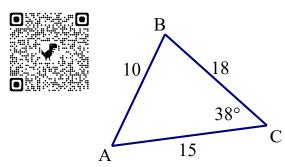
This cross section can be described as a

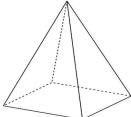
- 1) rectangle
- 2) parabola



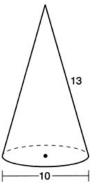

41. A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

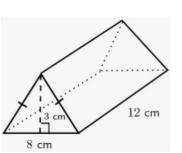

- 1) triangle
- 2) rectangle
- 3) pentagon
- 4) hexagon


42. Find the area of *PQR*.

43. Find the area of *ABC* to the *nearest tenth of a unit*.



44. A regular pyramid has a square base with an edge length of 14 cm and an altitude of 24 cm. Find its volume.



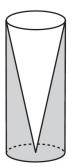
45. Determine and state the volume of the cone, in terms of π .

46. Clay in the shape of a triangular prism shown below has a mass of 1260 grams. What is its density?

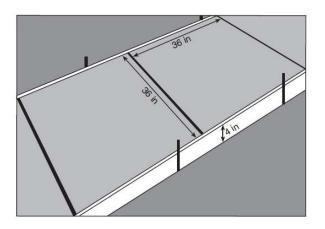
47. Find the volume of the figure below to the *nearest tenth of a foot*.

48. A hollow cylinder has a height of 10 inches, an outer diameter of 5 inches, and a thickness of 1 inch. Find the volume to the hollow cylinder to the nearest cubic inch.

49. Find the volume of a cone whose diameter is 15 inches and height of 2 feet rounded to the *nearest cubic foot*.



50. A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for \$0.29 per kilogram, and has a density of 7.95 g/cm³. If the machinist makes 500 of these parts, what is the cost of the steel, to the *nearest dollar*?


51. Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches.

Walter goes to a hobby store to buy the wax for his candles. The wax costs \$0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles?

• 52. Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for \$3.25 per cubic foot. How much money will it cost Ian to replace the two concrete sections?

53. Baseballs that have a diameter of 2.8 inches are to be packed into a rectangular shipping box that has dimensions 24 inches by 12 inches by 6 inches. What is the maximum number of baseballs that can fit into the shipping box?

4

A

6

• 54. In the diagram below, right triangle *ABC* has legs whose lengths are 4 and 6. What is the volume, in terms of π , of the three-dimensional object formed by continuously rotating the right triangle around \overline{AB} ? C

ו	55. The line $y = 3x - 3x$	2 is dilated by a scale factor of 2 and centered at the origin. Write an	l
••	1 1	ts the image of the line after the dilation.	
ļ	1) $y = 3x - 2$	3) $y = 6x - 2$	

4) y = 6x - 42) y = 3x - 4

56. The line y = 3x - 2 is dilated by a scale factor of 2 and centered at (-1,-5). Write an equation that represents the image of the line after the dilation.

- 1) y = 3x 22) y = 3x - 4
- 3) y = 6x 2
- 4) y = 6x 4

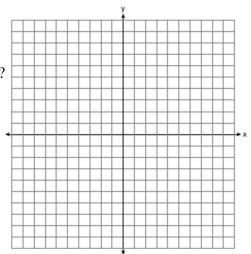
57. The line $y = \frac{2}{3}x + 3$ is dilated centered at the origin. Which linear equation could be its

image?

1) $2x + 3y = 7$	3) $3x - 2y = 7$
2) $2x - 3y = 7$	4) $3x + 2y = 7$

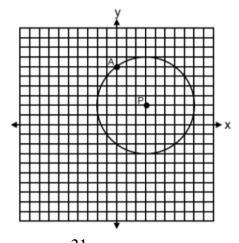
58. What is the equation of a line that passes through the point (-3, -11) and is parallel to the line whose equation is y=2x-4?

1) y = 2x + 52) y = 2x - 53) $y = \frac{1}{2}x + \frac{25}{2}$ 4) $y = -\frac{1}{2}x - \frac{25}{2}$


59. What is an equation of the line that passes through the point (6, 8) and is perpendicular to a line with equation $y = \frac{3}{2}x + 5$?

1)
$$y-8 = \frac{3}{2}(x-6)$$

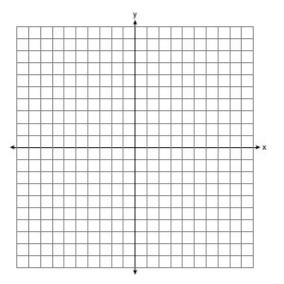
2) $y-8 = -\frac{2}{3}(x-6)$
3) $y+8 = \frac{3}{2}(x+6)$
4) $y+8 = -\frac{2}{3}(x+6)$


60. Line segment *NY* has endpoints *N*(-11, 5) and *Y*(5, -7). What is the equation of the perpendicular bisector of *NY*? 1) $y+1 = \frac{4}{3}(x+3)$ 2) $y+1 = -\frac{3}{2}(x+3)$

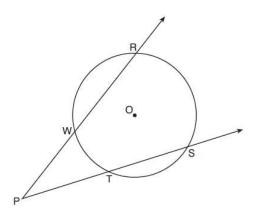
3)
$$y - 6 = \frac{4}{3}(x - 8)$$

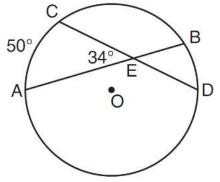
4) $y - 6 = -\frac{3}{4}(x - 8)$

61. Which of the following is the equation of the given circle? $(x-3)^{2} + (y-2)^{2} = 25$ (x+3)² + (y+2)² = 25 (x-3)² + (y-2)² = 5 $(x+3)^2 + (y+2)^2 = 5$

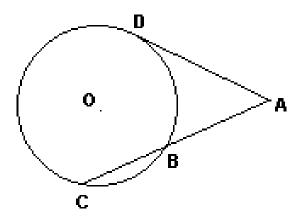

62. State the center and the exact value of the radius of $x^2 + y^2 - 4x + 8y + \frac{31}{4} = 0$

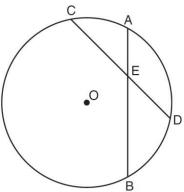
63. Directed line segment SB has endpoints whose coordinates are S(-6,3) and B(9,-2). Determine the coordinates of point J that divides the segment in the ratio 2 to 3.





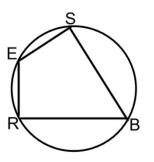
64. As shown in the diagram below, secants \overrightarrow{PWR} and \overrightarrow{PTS} are drawn to circle O from external point P.


If $m \angle RPS = 35^{\circ}$ and $\widehat{mRS} = 121^{\circ}$, determine and state \widehat{mWT} .


65. In the diagram below of circle *O*, chords \overline{AB} and \overline{CD} intersect at *E*. If $m \angle AEC = 34$ and $\widehat{mAC} = 50$, what is \widehat{mDB} ?

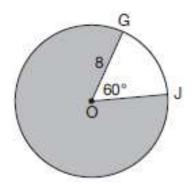
66. In the diagram, \overline{AD} is tangent to circle O at D, and \overline{CBA} is a secant. If AD = 6 and AC = 9, what is AB?

67. In the diagram below of circle *O*, chords \overline{AB} and \overline{CD} intersect at *E*. If CE = 10, ED = 6, and AE = 4, what is the length of \overline{EB} ?



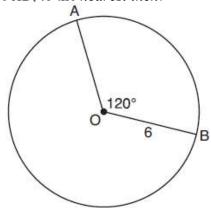
68. In circle *O* two secants, \overline{ABP} and \overline{CDP} , are drawn to external point *P*. If $\widehat{mAC} = 72^\circ$, and $\widehat{mBD} = 34^\circ$, what is the measure of $\angle P$?

69. In the diagram below, quadrilateral *SBRE* is inscribed in the circle. If $m \angle BRE = 91^{\circ}$ and $m \angle SBR = 40^{\circ}$, find $m \angle BSE$ and $m \angle SER$



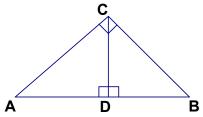
70. In the diagram below of circle O, GO = 8 and $m \angle GOJ = 60^{\circ}$. What is the area, in terms of π , of the shaded region? 1) 4π

2) $\frac{20\pi}{3}$


3

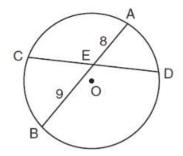
- 3) $\frac{32\pi}{3}$
- 4) $\frac{160 \pi}{3}$

71. The diagram below shows circle O with radii \overline{OA} and \overline{OB} . The measure of angle AOB is 120°, and the length of a radius is 6 inches. Find the length of arc AB, to the *nearest inch*.



72. The volume of a cylinder is 12,566.4 cm³. The height of the cylinder is 8 cm. Find the radius of the cylinder to the *nearest tenth of a centimeter*.
 1) 12.3

2) 22.4 3) 7.9 4) 501.8


73. Altitude \overline{CD} is drawn to right triangle ABC. If $\overline{AC} = 8$, $\overline{AB} = x$, and $\overline{AD} = x - 12$. Find the measure of \overline{AD} .

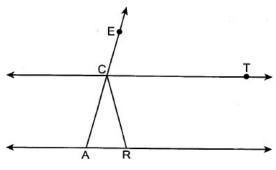
In the diagram below of circle O, chord \overline{AB} bisects chord \overline{CD} at E. If AE = 8 and BE = 9, find the length of \overline{CE} in simplest radical form.

75. Which quadrilateral has diagonals that always bisect its

- angles and also bisect each other?
- 1) rhombus
- 2) rectangle
- 3) parallelogram
- 4) isosceles trapezoid

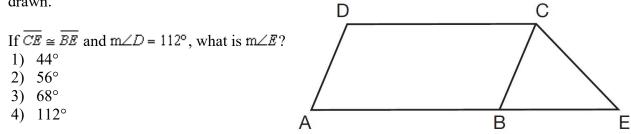
76. A parallelogram must be a rectangle when its

- 1) diagonals are perpendicular
- 2) diagonals are congruent
- 3) opposite sides are parallel
- 4) opposite sides are congruent

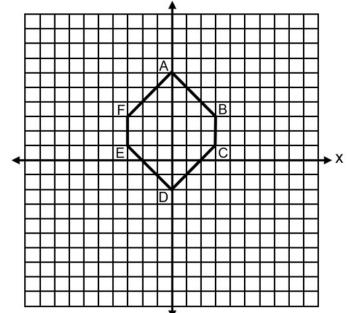

77. If *ABCD* is a parallelogram, which statement would prove that *ABCD* is a rhombus?

1)	$\angle ABC \cong \angle CDA$	3)	$\overline{AC} \perp \overline{BD}$
2)	$\overline{AC} \cong \overline{BD}$	4)	$\overline{AB} \perp \overline{CD}$

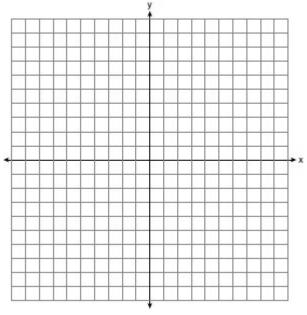
78. A rhombus has diagonals that measure 6 and 8. Find the perimeter of the rhombus.

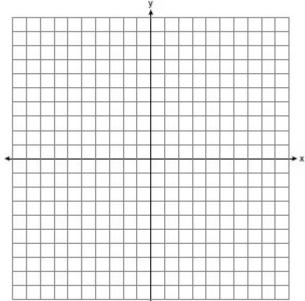


79. In the diagram below, $\overrightarrow{CT} \parallel \overrightarrow{AR}$, and \overrightarrow{ACE} and \overrightarrow{RC} are drawn such that $\overrightarrow{AC} \cong \overrightarrow{RC}$. If $m \angle ECT = 75^\circ$, what is $m \angle ACR$?

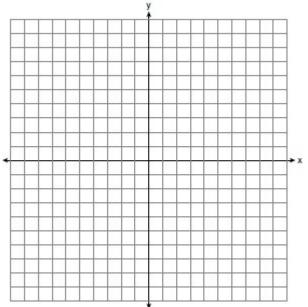


80. In the diagram below, *ABCD* is a parallelogram, \overline{AB} is extended through *B* to *E*, and \overline{CE} is drawn.


81. Find the perimeter of ABCDEF in simplest radical form.



82. A triangle has vertices A(-2,4), B(6,2), and C(1,-1). Prove that $\triangle ABC$ is an isosceles right triangle. [The use of the set of axes below is optional.]

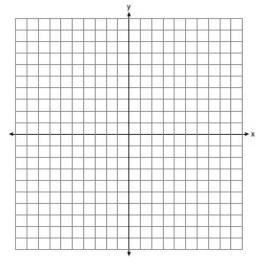


83. Quadrilateral *PQRS* has vertices P(-2, 3), Q(3, 8), R(4, 1), and S(-1, -4). Prove that *PQRS* is a rhombus. Prove that *PQRS* is *not* a square. [The use of the set of axes below is optional.]

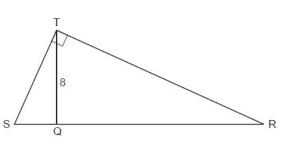
84. Quadrilateral DEFG has vertices D(1,3) E(-1,1) F(-1,-2) G(4,3). Prove that DEFG is an isosceles trapezoid.

85. Given: Triangle *DUC* with coordinates D(-3, -1), U(-1, 8), and C(8, 6)Prove: $\triangle DUC$ is a right triangle Point *U* is reflected over \overline{DC} to locate its image point, *U'*, forming quadrilateral *DUCU'*. Prove quadrilateral *DUCU'* is a square.

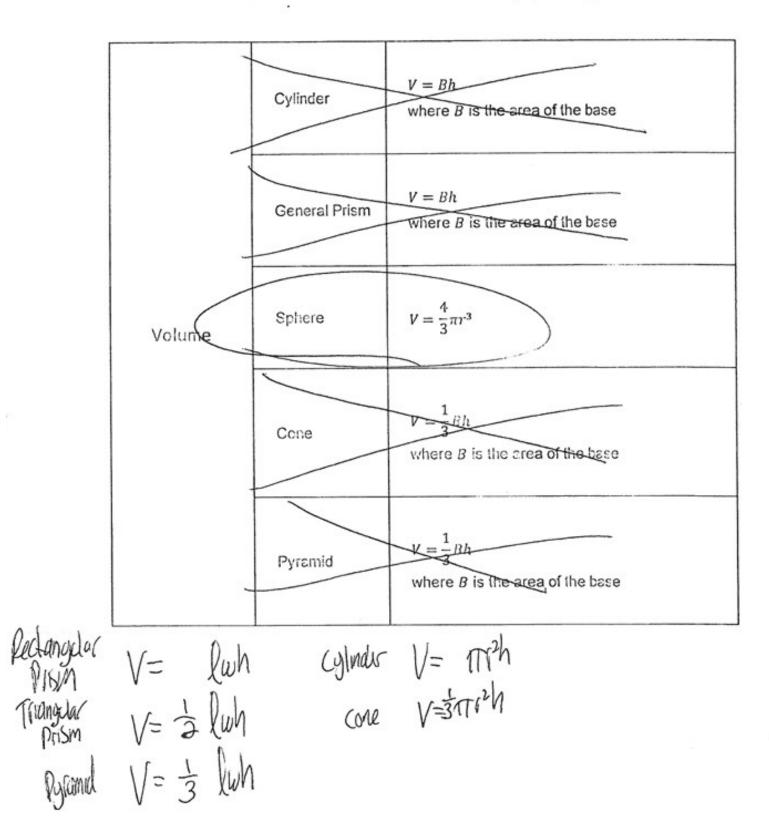
[The use of the set of axes below is optional.]



- 86. Parallelogram ABCD has coordinates A(0, 7) and C(2, 1).
 Which statement would prove that ABCD is a rhombus?
 1) The midpoint of AC is (1,4).
 - 2) The length of \overline{BD} is $\sqrt{40}$.


3) The slope of
$$\overline{BD}$$
 is $\frac{1}{3}$

4) The slope of
$$\overline{AB}$$
 is $\frac{1}{3}$



87. Right triangle *STR* is shown below, with $m \angle T = 90^\circ$. Altitude \overline{TQ} is drawn to \overline{SQR} , and TQ = 8. If the ratio SQ: QR is 1:4, determine and state the length of \overline{SR} .

