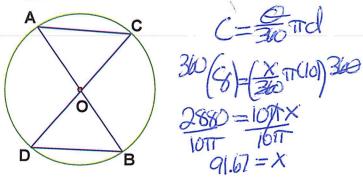
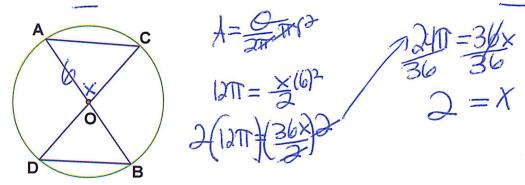
A=11/2	C=Trd		
degrees.	dyres:		
Name $S(Mansky) = \frac{A - C}{340}\pi r^2$	adas:	Date	
Mr. Schlansky Cadans	(= CATA	Geometry	

Conversions with Arc Length and Area of a Sector

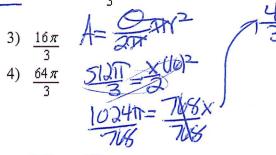
1. Find the arc length of a sector that has a diameter of 10 inches and a central angle of $\frac{\pi}{3}$ radians in terms of π .


2. Find the arc length of a sector that has a radius of 4 inches and has a central angle of 45° to the nearest tenth of an inch.

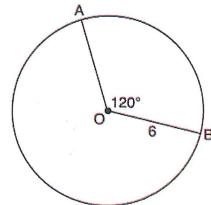
3. Find the area of a sector whose radius is 7 centimeters and central angle is 40° to the nearest hundredth of a square centimeter.


4. Find the area of a sector whose diameter is 20 centimeters and central angle is $\frac{2\pi}{3}$ radians to the nearest square centimeter.

$$A = \frac{2}{3}(10)^{2}$$


5. If arc $\overrightarrow{AC} = 8$, and $\overrightarrow{AB} = 10$, find $m \angle AOC$ to the nearest hundredth of a degree.

6. If the area of sector AOC is 12π and $\overline{AO} = 6$, find $m \angle AOC$ to the nearest radian.



- 7. In a circle with a diameter of 32, the area of a sector is $\frac{512\pi}{3}$. The measure of the angle of the sector, in radians, is

- 8. The diagram below shows circle O with radii \overline{OA} and \overline{OB} . The measure of angle AOBis 120°, and the length of a radius is 6 inches.
- Which expression represents the length of arc AB, in inches?

- 2) 120(6)3) $\frac{1}{3}(36\pi)$

