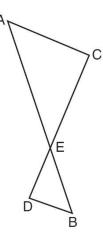
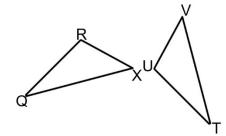
Determining If a Proportion Is Correct


1. As shown in the diagram below, \overline{AB} and \overline{CD} intersect at E, and $\overline{AC} \parallel \overline{BD}$. Given $\triangle AEC \sim \triangle BED$, which equation is true?

$$\frac{AE}{BE} = \frac{AC}{BD}$$

3)
$$\frac{EC}{AE} = \frac{BE}{ED}$$

4)
$$\frac{ED}{EC} = \frac{AC}{BD}$$


2. In the diagram below, $\Delta QRX \sim \Delta TUV$. Which of the following statements is *not* true?

1)
$$\frac{\overline{QR}}{\overline{TU}} = \frac{\overline{QX}}{\overline{TV}}$$

1)
$$\frac{\overline{QR}}{\overline{TU}} = \frac{\overline{QX}}{\overline{TV}}$$
 2) $\frac{\angle X}{\overline{\angle V}} = \frac{\angle Q}{\angle T}$ 3) $\frac{\overline{RX}}{\overline{UV}} = \frac{\overline{VT}}{\overline{XQ}}$ 4) $\frac{\overline{QX}}{\overline{QR}} = \frac{\overline{TV}}{\overline{TU}}$

3)
$$\frac{\overline{RX}}{\overline{UV}} = \frac{\overline{VT}}{\overline{XC}}$$

$$4) \ \frac{QX}{QR} = \frac{TV}{TU}$$

3. Given that $\triangle DEF \sim \triangle HIJ$, which is the correct statement about their corresponding sides?

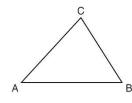
1)
$$\frac{\overline{EF}}{\overline{IJ}} = \frac{\overline{DE}}{\overline{HI}}$$
 3) $\frac{\overline{DE}}{\overline{HJ}} = \frac{\overline{EF}}{\overline{HI}}$

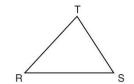
3)
$$\frac{\overline{DE}}{\overline{HJ}} = \frac{\overline{EF}}{\overline{HI}}$$

2)
$$\frac{\overline{EF}}{\overline{HI}} = \frac{\overline{IJ}}{\overline{DE}}$$
 4) $\frac{\overline{DE}}{\overline{JI}} = \frac{\overline{EF}}{\overline{HJ}}$

4)
$$\frac{\overline{DE}}{\overline{JI}} = \frac{\overline{EF}}{\overline{HJ}}$$

4. In the diagram below, $\triangle ABC \sim \triangle RST$.


Which statement is *not* true?


1)
$$\angle A \cong \angle R$$

$$\frac{AB}{RS} = \frac{BC}{ST}$$

3)
$$\frac{AB}{BC} = \frac{ST}{RS}$$

4)
$$\angle B \cong \angle S$$

5. Scalene triangle ABC is similar to triangle DEF. Which statement is false?

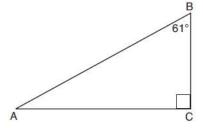
1)
$$\frac{\overline{AB}}{\overline{BC}} = \frac{\overline{DE}}{\overline{EE}}$$

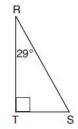
$$\frac{\overline{AC}}{\overline{DF}} = \frac{\overline{BC}}{\overline{EF}}$$

3)
$$\angle ACB \cong \angle DFE$$

4)
$$\angle ABC \cong \angle EDF$$

6. Given right triangle ABC with a right angle at C, $m\angle B = 61^{\circ}$. Given right triangle RST with a right angle at T, $m\angle R = 29^{\circ}$.


Which proportion in relation to $\triangle ABC$ and $\triangle RST$ is *not* correct?

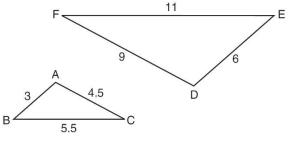

1)
$$\frac{AB}{RS} = \frac{RT}{AC}$$

$$\frac{3)}{ST} = \frac{AC}{RT}$$

2)
$$\frac{BC}{ST} = \frac{AB}{RS}$$

4)
$$\frac{AB}{AC} = \frac{RS}{RT}$$

7. In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where AB = 3, BC = 5.5, AC = 4.5, DE = 6, FD = 9, and EF = 11.


Which relationship must always be true?

2)
$$\frac{\text{m}\angle C}{\text{m}\angle F} = \frac{2}{1}$$

3)
$$\frac{m\angle A}{m\angle C} = \frac{m\angle F}{m\angle D}$$

4)
$$\frac{m\angle B}{m\angle E} = \frac{m\angle C}{m\angle F}$$

8. In the diagram below of isosceles triangle *AHE* with the vertex angle at H, $\overline{CB} \perp \overline{AE}$ and $\overline{FD} \perp \overline{AE}$.

Which statement is always true?

$$1) \quad \frac{AH}{AC} = \frac{EH}{EF}$$

$$\frac{AC}{EF} = \frac{AB}{ED}$$

3)
$$\frac{AB}{ED} = \frac{CB}{FE}$$

4)
$$\frac{AD}{AB} = \frac{BE}{DE}$$

