

Date _____ Geometry

Determining Whether Triangles are Similar

1. Determine whether the following triangles are similar. Explain your answer.

2. Determine whether the following triangles are similar. Explain your answer.

3. In the diagram below, $\overline{AR} = 15$, $\overline{RF} = 12$, $\overline{DO} = 10$, $\overline{OG} = 8$, and $\angle ARF \cong \angle DOG$. Must $\triangle ARF \sim \triangle DOG$? Explain your answer.

4. In the diagram below, $\overline{AR} = 18$, $\overline{RF} = 15$, $\overline{DO} = 12$, $\overline{OG} = 10$, and $\angle RAF \cong \angle ODG$. Must $\triangle ARF \sim \triangle DOG$? Explain your answer.

The angle is not inbetween the two sides so it is not SAS!

18=15 3=3 bit it does not matter

5. In the diagram below, $\overline{AF} = 20$, $\overline{RF} = 12$, $\overline{DG} = 12$, $\overline{OG} = 4$, and $\angle F \cong \angle G$. Must $\triangle ARF \sim \triangle DOG$? Explain your answer.

373X

The angle is inbetween the 2 sides but the sides are not in poportion.

6. In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where AB = 3, BC = 5.5, AC = 4.5, DE = 6, FD = 9, and EF = 11.

7. Triangles ABC and DEF are drawn below.

If AB = 9, BC = 15, DE = 6, EF = 10, and $\angle B \cong \angle E$, are the triangles similar? Explain your answer.

8. Triangles RST and XYZ are drawn below. If RS = 6, ST = 14, XY = 9, YZ = 21, and $\angle S \cong \angle Y$, is $\triangle RST$ similar to $\triangle XYZ$? Justify your answer.

9. In the diagram below, $\angle GRS \cong \angle ART$, GR = 36, SR = 45, AR = 15, and RT = 18.

13. In the diagram below, AE = 15, EB = 27, AF = 20, and FC = 36. Is $\triangle ABC \sim \triangle AEF$. Explain your answer.

14. In $\triangle ADC$ below, \overline{EB} is drawn such that AB = 4.1, AE = 5.6, BC = 8.22, and ED = 3.42... Is $\triangle ABE$ similar to $\triangle ADC$? Explain why.

