Name:
Mr. Schlansky

Date
Algebra II

Double Angle Identities

1. The expression $\frac{\sin 2 A}{2 \cos A}$ is equivalent to
(1) $\cos A$
(2) $\tan A$
(3) $\sin A$
(4) $\frac{1}{2} \sin A$
2. The expression $\frac{2 \sin A}{\sin 2 A}$ is equivalent to:
(1) $\tan \mathrm{A}$
(2) $\sec \mathrm{A}$
(3) 1
(4) -1
3. The expression $\frac{\sin 2 \theta}{\sin ^{2} \theta}$ is equivalent to
(1) $\frac{2}{\sin \theta}$
(3) $2 \cot \theta$
(2) $2 \cos \theta$
(4) $2 \tan \theta$
4. The expression $\frac{2 \sin 2 A}{2 \cos ^{2} A}$ is equivalent to:
(1) $2 \csc \mathrm{~A}$
(2) $2 \tan \mathrm{~A}$
(3) 1
(4) -1
5. The expression $\frac{4 \cos A}{\sin 2 A}$ is equivalent to:
(1) $2 \sin \mathrm{~A}$
(2) $2 \csc \mathrm{~A}$
(3) $4 \tan \mathrm{~A}$
(4) $\frac{2}{\cos A}$
6. The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to
(1) $\sin ^{2} \theta$
(2) $-\sin ^{2} \theta$
(3) $\cos ^{2} \theta+1$
(4) $-\cos ^{2} \theta-1$
7. The expression $\frac{1+\cos 2 A}{\sin 2 A}$ is equivalent to
1) $\cot A$
2) $\tan A$
3) $\sec A$
4) $1+\cot 2 A$
8. The expression $\frac{\cos 2 A}{\sin ^{2} A-\cos ^{2} A}$ is equivalent to:
(1) $\tan \mathrm{A}$
(2) $\sec \mathrm{A}$
(3) 1
(4) -1
