Name: _____ Mr. Schlansky Date _____ Algebra II

Double Angle Identities

1. The expression $\frac{\sin 2A}{2\cos A}$ is equivalent to

(1) $\cos A$ (2) $\tan A$ (3) $\sin A$ (4) $\frac{1}{2}\sin A$

2. The expression
$$\frac{2 \sin A}{\sin 2A}$$
 is equivalent to:
(1) tan A (2) sec A (3) 1 (4) -1

3. The expression
$$\frac{\sin 2\theta}{\sin^2 \theta}$$
 is equivalent to
(1) $\frac{2}{\sin \theta}$ (3) $2 \cot \theta$
(2) $2 \cos \theta$ (4) $2 \tan \theta$

4. The expression $\frac{2 \sin 2A}{2 \cos^2 A}$ is equivalent to: (1) 2 csc A (2) 2 tan A (3) 1 (4) -1 5. The expression $\frac{4\cos A}{\sin 2A}$ is equivalent to: (2) 2csc A (3) 4tan A (4) $\frac{2}{\cos A}$ (1) 2sin A

6. The expression
$$\cos^2 \theta - \cos 2\theta$$
 is equivalent to
(1) $\sin^2 \theta$ (2) $-\sin^2 \theta$ (3) $\cos^2 \theta + 1$ (4) $-\cos^2 \theta - 1$

7. The expression $\frac{1 + \cos 2A}{\sin 2A}$ is equivalent to

- cotA
 tanA
- 3) secA
- 4) $1 + \cot 2A$

8. The expression $\frac{\cos 2A}{\sin^2 A - \cos^2 A}$ is equivalent to: (1) tan A (2) $\sec A$ (3) 1 (4) -1