Name _____ Mr. Schlansky

Date _____ Algebra II

Exponential and Logarithmic Graphs Multiple Choice

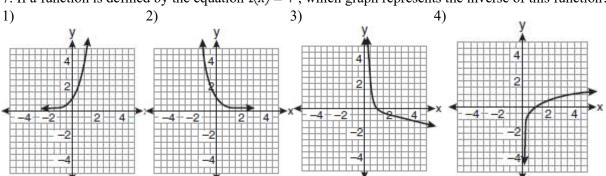
1. Which statement about the graph of $c(x) = \log_6 x$ is *false*?

- 1) The asymptote has equation y = 0.
- 2) The graph has no *y*-intercept.
- 3) The domain is the set of positive reals.
- 4) The range is the set of all real numbers.

2. Which statement about the graph of the equation $y = e^x$ is *not* true?

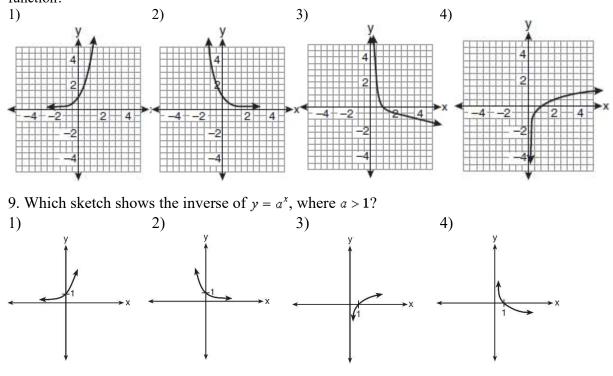
- 1) It is asymptotic to the *x*-axis.
- 2) The domain is the set of all real numbers.
- 3) It lies in Quadrants I and II.
- 4) It passes through the point (e, 1).

3. Which statement is true about the graph of $f(x) = \left(\frac{1}{8}\right)^x$?


- 1) The graph is always increasing.
- 2) The graph is always decreasing.
- 3) The graph passes through (1, 0).
- 4) The graph has an asymptote, x = 0.
- 4. Which statement is *true* regarding the equation $f(x) = \log_7 x$?
- 1) It is always increasing
- 2) The graph passes through (0,1)
- 3) The domain is all real numbers
- 4) The equation of the asymptote is y=0

5. Given the equation $f(x) = \pi^x$, which of the following statements is true?

- 1) The graph passes through $(\pi, 1)$
- 2) The domain is $[0,\infty)$
- 3) The graph passes through (0,1)
- 4) The range is all real numbers


6. Which statement is *false* regarding the equation $f(x) = \ln x$?

- 1) It passes through (1,0)
- 2) It is always decreasing
- 3) The equation of the asymptote is x=0
- 4) Its range is $(-\infty,\infty)$

7. If a function is defined by the equation $f(x) = 4^x$, which graph represents the inverse of this function?

8. If a function is defined by the equation $f(x) = \log_4 x$, which graph represents the inverse of this function?

10. What is the inverse of the function $y = \log_3 x$? 1) $y = x^3$ 2) $y = \log_x 3$ 3) $y = 3^x 4$ $x = 3^y$

11. If $f(x) = a^x$ where a > 1, then the inverse of the function is 3) $f^{-1}(x) = \log_a x$ 4) $f^{-1}(x) = x \log a$ 1) $f^{-1}(x) = \log_x a$ 2) $f^{-1}(x) = a \log x$

- 12. The asymptote of the graph of $f(x) = 5\log(x+4)$ is
- 1) y = 62) x = -43) x = 44) y = 5

13. The asymptote of the graph of $j(x) = 2e^{x-4} - 1$ is 1) x = 4 3) y = -12) x = -4 4) y = 2

14. The asymptote of the graph of e(x) = log₃(x-5)+1 is
1) y = 1
2) x = 1
3) y = 5
4) x = 1

15. The asymptote of the graph of $m(x) = -3(2)^{x+1} - 4$ is 1) x = -1 3) y = -42) x = 3 4) y = -3

16. For the equation	$f(x) = 2^{x-3} + 1$, as $x \to -\infty$
1) $f(x) \rightarrow -\infty$	3) $f(x) \to \infty$
2) $f(x) \rightarrow 1$	4) $f(x) \rightarrow 3$

17. For the equation	$f(x) = \log_2(x-4) + 3$, as $x \to 4$
1) $f(x) \rightarrow -\infty$	3) $f(x) \to \infty$
2) $f(x) \rightarrow 3$	4) $f(x) \rightarrow 4$

18. For the equation $f(x) = -\log_3(x+1) - 2$, as $x \to \infty$ 1) $f(x) \to -\infty$ 3) $f(x) \to \infty$ 2) $f(x) \to -1$ 4) $f(x) \to -2$

19. Given
$$f(x) = 3^{x-1} + 2$$
, as $x \to -\infty$ 1) $f(x) \to -1$ 2) $f(x) \to 0$ 3) $f(x) \to 2$ 4) $f(x) \to -\infty$

20. For the equation $f(x) = 3\ln(x-4) + 1$, $f(x) \rightarrow -\infty$ as 1) $x \rightarrow 4$ 3) $x \rightarrow \infty$ 2) $x \rightarrow 1$ 4) $x \rightarrow -\infty$