

Exponential and Logarithmic Graphs Multiple Choice

- 1. Which statement about the graph of $c(x) = \log_6 x$ is false?
- The asymptote has equation y = 0. $\angle = 0$
- 2) The graph has no y-intercept.
- 3) The domain is the set of positive reals.
- 4) The range is the set of all real numbers.

- 2. Which statement about the graph of the equation $y = e^{x}$ is not true?
- 1) It is asymptotic to the x-axis.
- 2) The domain is the set of all real numbers.
- 3) It lies in Quadrants I and II.
- A) It passes through the point (e, 1). (O,1)

- 1) The graph is always increasing.
- 2) The graph is always decreasing.
- 3) The graph passes through (1,0).
- 4) The graph has an asymptote, x = 0.

- 4. Which statement is *true* regarding the equation $f(x) = \log_7 x$?
- Oft is always increasing \checkmark
- 2) The graph passes through (0,1)
- 3) The domain is all real numbers
- 4) The equation of the asymptote is $y=0 \times 10^{-10}$

- 5. Given the equation $f(x) = \pi^x$, which of the following statements is true?
- 1) The graph passes through $(\pi,1)$
- 2) The domain is $[0, \infty)$
- 3) The graph passes through (0,1)
- 4) The range is all real numbers

- 1) It passes through (1,0)
- 21 is always decreasing
- 3) The equation of the asymptote is x=0
- 4) Its range is $(-\infty, \infty)$

7. If a function is defined by the equation $f(x) = 4^x$, which graph represents the inverse of this function?

8. If a function is defined by the equation $f(x) = \log_4 x$, which graph represents the inverse of this

function?

2)

9. Which sketch shows the inverse of $y = a^x$, where a > 1?

10. What is the inverse of the function $y = \log_3 x$? $e^{y} = \log_3 x$?

1)
$$y = x^3$$

2)
$$y = \log_{x} 3$$

2)
$$y = \log_x 3$$
 (3) $y = 3^x 4$) $x = 3^y$

11. If $f(x) = a^x$ where a > 1, then the inverse of the function is

1) $f^{-1}(x) = \log_x a$ 2) $f^{-1}(x) = a \log x$ 4) $f^{-1}(x) = x \log a$

$$1) \quad f^{-1}(x) = \log_x \alpha$$

(3)
$$f^{-1}(x) = \log_{a} x$$

$$2) \quad f^{-1}(x) = a \log x$$

4)
$$f^{-1}(x) = x \log \alpha$$

Use the table or the

- 12. The asymptote of the graph of $f(x) = 5\log(x + 4)$ is
- 1) y = 6

3) x = 4

(2) x = -4

- 4) y = 5
- 13. The asymptote of the graph of $j(x) = 2e^{x-4}$ (1) is
- 1) x = 4
- (3) y = -1
- 2) x = -4
- 4) y = 2
- 14. The asymptote of the graph of $e(x) = \log_3(x-5) + 1$ is
- 1) y = 1
- 3) y = 5
- 2) x = 1
- (4) x = 5
- 15. The asymptote of the graph of $m(x) = -3(2)^{x+1} 4$ is
- 1) x = -1
- (3) y = -4
- 2) x = 3
- 4) y = -3
- 16. For the equation $f(x) = 2^{x-3} + 1$, as $x \to -\infty$
- 1) $f(x) \rightarrow -\infty$
- 3) $f(x) \rightarrow \infty$
- $2f(x) \rightarrow 1$
- 4) $f(x) \rightarrow 3$
- 17. For the equation $f(x) = \log_2(x-4) + 3$, as $x \to 4$
- $\Delta \mathcal{D} f(x) \to -\infty$
- 3) $f(x) \to \infty$
- $2) \ f(x) \to 3$
- 4) $f(x) \rightarrow 4$
- 18. For the equation $f(x) = -\log_3(x+1) 2$, as $x \to \infty$
- (1) $f(x) \to -\infty$
- 3) $f(x) \rightarrow \infty$
- (2) $f(x) \rightarrow -1$
- 4) $f(x) \rightarrow -2$
- 19. Given $f(x) = 3^{x-1} + 2$, as $x \to -\infty$
- 1) $f(x) \rightarrow -1$
- $2) \quad f(x) \to 0$

- $\mathfrak{D}f(x)\to 2$
- 4) $f(x) \rightarrow -c$
- 20. For the equation $f(x) = 3\ln(x-4) + 1$, $f(x) \to -\infty$ as
- 4
- 3) $x \to \infty$
- 2) $x \rightarrow 1$
- 4) $x \rightarrow -\infty$

