Name _____ Mr. Schlansky

Date ____ Algebra I

Exponential Regression Equations

1. The accompanying table shows the number of bacteria present in a certain culture over a 5-hour period, where x is the time, in hours, and y is the number of bacteria.

Write an exponential regression equation for this set of data, rounding all values to *four decimal places*. Using this equation, determine the number of whole bacteria present after 6.5 hours.

2. The accompanying table shows the amount of water vapor, y, that will saturate 1 cubic meter of air at different temperatures, x.

Write an exponential regression equation for this set of data, rounding all values to the *nearest thousandth*. Using this equation, predict the amount of water vapor that will saturate 1 cubic meter of air at a temperature of 50°C, and round your answer to the *nearest tenth of a gram*.

3. Jean invested \$380 in stocks. Over the next 5 years, the value of her investment grew, as shown in the accompanying table.

Write the exponential regression equation for this set of data, rounding all values to *two decimal places*. Using this equation, find the value of her stock, to the *nearest dollar*, 10 years after her initial purchase.

1		
	x	У
	0	1,000
	1	1,049
	2	1,100
	3	1,157
	4	1,212
	5	1,271

Amount of Water Vapor That Will Saturate 1 Cubic Meter of Air at Different Temperatures

Air Temperature (x) (°C)	Water Vapor (y) (g)		
-20	1		
-10	2		
0	5		
10	9		
20	17		
30	29		
40	50		

Years Since Investment (<i>x</i>)	Value of Stock, in Dollars (y)
0	380
1	395
2	411
3	427
4	445
5	462

4. The following table represents the amount of student loan debt Dr. Ross has x years after 2010. Write an exponential regression equation to represent the amount of debt Ross will have left have left after x years. Round all coefficients to the *nearest thousandth*. Assuming the pattern continues, in what year will Ross have \$10,000 left in debt?

Years after 2010	Debt in Dollars
0	120,000
1	112,541
3	88,897
4	76,441
6	53,289

5. Consider the data in the table below.

State an exponential regression equation to model these data, rounding all values to the *nearest thousandth*. Use your equation to find x when y is 100, rounding to the *nearest tenth*.

X	1	2	3	4	5	6
у	3.9	6	11	18.1	28	40.3

6. A runner is using a nine-week training app to prepare for a "fun run." The table below represents the amount of the program completed, *A*, and the distance covered in a session, *D*, in miles.

Based on these data, write an exponential regression equation, rounded to the *nearest thousandth*, to model the distance the runner is able to complete in a session as she continues through the nine-week program. After how much of the program is completed will the runner complete 2.5 miles? Round your answer to the *nearest hundredth*.

A	$\frac{4}{9}$	<u>5</u> 9	<u>6</u> 9	<u>8</u> 9	1
D	2	2	2.25	3	3.25