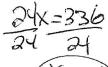
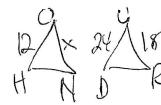
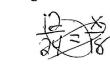

Finding Missing Sides of Similar Triangles

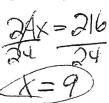
1. In the diagram, $\triangle JAC$ is similar to $\triangle SON$. Find the measure of SN.

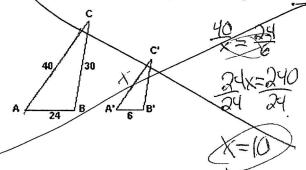


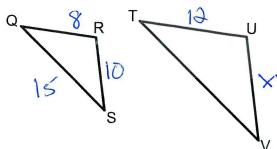
2. In the diagram, ΔSLV is similar to ΔDOR . If SV=24, DR=16, LV=21, find OR.



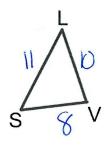


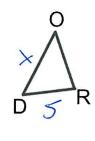


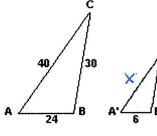

3. Triangle HON is similar to triangle DUR. If HO=12, DU=24, UR=18, find ON.



4. In the diagram, $\triangle ABC$ is similar to $\triangle A'B'C'$, AB = 24, BC = 30, and CA = 40. If the shortest side of $\triangle A'B'C'$ is 6, find the length of the longest side of $\triangle A'B'C'$.




4. In the diagram below, triangle QRS is similar to triangle TUV. If QR = 8, RS = 10, QS = 15, and TU = 12, find UV.


$$\frac{8}{12} = \frac{10}{7}$$
 $\frac{8}{8} = \frac{120}{8}$
 $\frac{8}{8} = \frac{120}{8}$

5. In the diagram, $\triangle SLV$ is similar to $\triangle DOR$. If SV=8, SL=11, LV=10, DR=5, find OD.

6. In the diagram, $\triangle ABC$ is similar to $\triangle A'B'C'$, AB = 24, BC = 30, and CA = 40. If the shortest side of $\triangle A'B'C'$ is 6, find the length of the longest side of $\triangle A'B'C'$.

C.
$$\frac{34}{34} = \frac{34}{34}$$

$$\frac{34}{34} = \frac{34}{34}$$