Finding Missing Sides of Similar Triangles

1. In the diagram, $\triangle JAC$ is similar to $\triangle SON$. Find the measure of SN.

2. In the diagram, $\triangle SLV$ is similar to $\triangle DOR$. If SV=24, DR=16, LV=21, find OR.

3. Triangle HON is similar to triangle DUR. If HO=12, DU=24, UR=18, find ON.

4. In the diagram, $\triangle ABC$ is similar to $\triangle A'B'C'$, AB = 24, BC = 30, and CA = 40. If the shortest side of $\triangle A'B'C'$ is 6, find the length of the longest side of $\triangle A'B'C'$.

5. In the diagram below, $\overline{AB} \parallel \overline{DE}$. If AC = 2, CD = 6, and CE = 3, what is BC? 6. In the diagram below, \overline{AD} intersects \overline{BE} at C, and $\overline{AB} \parallel \overline{DE}$. If CD = 6.6 cm, DE = 3.4 cm, CE = 4.2 cm, and BC = 5.25 cm, what is the length of \overline{AC} , to the nearest hundredth of a centimeter? 7. In the diagram below, \overline{AF} , and \overline{DB} intersect at C, and \overline{AD} and \overline{FBE} are drawn such that $m\angle D = 65^{\circ}$, $m\angle CBE = 115^{\circ}$, DC = 7.2, AC = 9.6, and FC = 21.6. What is the length of \overline{CB} ? 8. In the diagram below, $\overline{EF} \parallel \overline{HG}$, $\overline{EF} = 5$, $\overline{HG} = 12$, $\overline{FI} = 1.4x + 3$, and $\overline{HI} = 6.1x - 6.5$. What is the length of \overline{HI} ? \$(6.) x-6.5) = 12(1.4x+3) 6.1x - 6.5* 30.5x-325=16.8x+36 **Huse equation solver if needed -10.8x -16.8x