Given Radicals

Rewrite the following as radicals

1.
$$x^{\frac{2}{3}}$$

2.
$$x^{\frac{3}{4}}$$

3.
$$x^{\frac{5}{6}}$$

4.
$$x^{\frac{1}{3}}$$

5.
$$x^{\frac{3}{2}}$$

6.
$$x^{\frac{1}{2}}$$

1.
$$x^{\frac{4}{5}}$$

8.
$$x^{\frac{1}{7}}$$

9.
$$x^{\frac{5}{2}}$$

Rewrite the following using fractional exponents

10.
$$\sqrt[3]{x^4}$$

11.
$$\sqrt[5]{x^3}$$

12.
$$\sqrt[4]{x^7}$$

13.
$$\sqrt{x^3}$$

14.
$$\sqrt[6]{x^5}$$

15.
$$\sqrt{x}$$

1.
$$\sqrt[8]{x^3}$$

16.
$$\sqrt[5]{x^3}$$

17.
$$\sqrt[3]{x}$$

18. The expression $\sqrt[4]{16x^2y^7}$ is equivalent to

- 1) $\frac{1}{2}x^{2}y^{4}$ 2) $2x^{8}y^{28}$ 3) $\frac{1}{4}x^{2}y^{4}$ 4) $4x^{8}y^{28}$

19. The expression $\sqrt[4]{81x^2y^5}$ is equivalent to

- 1) $\frac{1}{3x^{2}y^{4}}$ 2) $\frac{1}{3x^{2}y^{4}}$ 3) $\frac{1}{5}$ 9xy 4) $\frac{2}{5}$

20. Which expression is equivalent to $(\sqrt{a^2b^{\frac{1}{2}}})^{-1}$?

- $(1) \ a^{-2}b^{-\frac{1}{2}}$
- (2) $-ab^{\frac{1}{4}}$
- $(3) -ab^2$ $(4) \frac{1}{ab^{\frac{1}{4}}}$

21. Kenzie believes that for $x \ge 0$, the expression $\left(\sqrt[7]{x^2}\right)\left(\sqrt[5]{x^3}\right)$ is equivalent to $\sqrt[35]{x^6}$. Is she correct? Justify your response algebraically.

22. Justify why $\frac{\sqrt[3]{x^2y^5}}{\sqrt[4]{x^3y^4}}$ is equivalent to $x^{-\frac{1}{12}}y^{\frac{2}{3}}$ using properties of rational exponents, where $x \neq 0$ and $y \neq 0$.

23. For n and p > 0, is the expression $\left(p^2 n^{\frac{1}{2}}\right)^8 \sqrt{p^5 n^4}$ equivalent to $p^{18} n^6 \sqrt{p}$? Justify your answer.

24. Use the properties of rational exponents to determine the value of y for the equation:

$$\frac{\sqrt[3]{x^8}}{\left(x^4\right)^{\frac{1}{3}}} = x^{\nu}, \ x > 1$$

25. Express the fraction $\frac{2x^{\frac{3}{2}}}{\left(16x^4\right)^{\frac{1}{4}}}$ in simplest radical form.