

Identifying Sequences of Rigid Motions Multiple Choice

1. In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

- a line reflection followed by a translation
- 2) a point reflection followed by a translation
- a translation followed by a reflection a translation followed by a rotation

2. A sequence of transformations maps rectangle ABCD onto rectangle A"B"C"D", as shown in the diagram below.

Which sequence of transformations maps ABCD onto A'B'C'D' and then maps A'B'C'D' onto

A''B''C''D''?

- a line reflection followed by a rotation
- 2) a line reflection followed by a translation
- a translation followed by a rotation

a translation followed by a line reflection

- 3. Which sequence of transformations will map $\triangle ABC$ onto $\triangle A'B'C'$?
- line reflection and translation
- point reflection and line reflection
- 3) translation and dilation
 - dilation and rotation

4. Identify which sequence of transformations could map pentagon ABCDE onto pentagon A"B"C"D"E", as shown below. dilation followed by a rotation translation followed by a rotation line reflection followed by a translation line reflection followed by a line reflection double like reflection keeps orientation 5. Triangles ABC and DEF are graphed on the set of axes below. Which sequence of rigid motions maps $\triangle ABC$ onto $\triangle DEF$? \searrow 1) A reflection over y = -x + 22)A point reflection through (0,2) \times 3) A translation 2 units left followed by a reflection over the x-axis 4) A translation 4 units down followed by a reflection over the y-axis 6. In the diagram below, $\triangle ABC \cong \triangle DEC$.

Which transformation will map $\triangle ABC$ onto $\triangle DEC$?

- 1) a rotation (3) a translation followed by a dilation

a line reflection followed by a second line reflection

not a single line reflection

1) reflection over the line y = -x (3) point reflection through (1,1)

reflection over the line y = -x + 2

4) rotation of 180° centered at the origin

8. In the diagram below, $\triangle ABC \cong \triangle DEF$.

Opposite orientation Single line reflection

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

1) a reflection over the x-axis followed by 3 a rotation of 180° about the origin a translation followed by a translation

a reflection over the y-axis followed by 4) a counterclockwise rotation of 90° a translation about the origin followed by a

translation

9. Triangle *ABC* and triangle *DEF* are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?

a reflection over the x-axis followed by a reflection over the y-axis

2) a point reflection through

2) a point reflection through the origin followed by a reflection over the line y = x

a 90° clockwise rotation about the origin followed by a reflection over the y-axis

4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

10. On the set of axes below, pentagon ABCDE is congruent to A"B"C"D"E".

Which describes a sequence of rigid motions that maps *ABCDE*

onto A"B"C"D"E"?

1) a rotation of 90° counterclockwise about the origin followed by a reflection over the x-axis

(2) a rotation of 90° counterclockwise about the origin followed by a translation down 7 units

/ 3) a reflection over the y-axis followed by a reflection over the x-axis $does d+\omega_0/L$

4) a reflection over the x-axis followed by a rotation of 90° counterclockwise about the origin

11. On the set of axes below, $\triangle LET$ and $\triangle L "E"T"$ are graphed in the coordinate plane where $\triangle LET \cong \triangle L "E"T"$.

Which sequence of rigid motions maps $\triangle LET$ onto $\triangle L "E"T"$?

a reflection over the 3) a rotation of 90°

y-axis followed by a counterclockwise about the reflection over the origin followed by a reflection over the y-axis

x-axis
a rotation of 180°
about the origin

4) a reflection over the *y*-axis followed by a rotation of 90° clockwise about the origin

12. On the set of axes below, congruent triangles ABC and DEF are drawn.

Same orientation not a single line reflection

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

A counterclockwise rotation of 90 degrees about the origin, followed by a translation 8 units to the right.

A counterclockwise rotation of 90 degrees about the origin, followed by a reflection over the *y*-axis.

3) A point reflection through the origin, Confollowed by a translation 4 units down.

4) A clockwise rotation of 90 degrees about the origin, followed by a reflection over the *x*-axis.