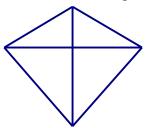
Name _____ Mr. Schlansky


Date

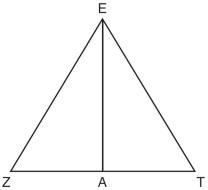
Geometry

Perpendicular Bisector Multiple Choice

Perpendicular bisector creates

-two pairs of congruent triangles so all of their corresponding parts are congruent due to CPCTC -two isosceles triangles

The top 2 small triangles are congruent and the top big triangle is isosceles The bottom 2 small triangles are congruent and the bottom big triangle is isosceles


1. In the diagram below of quadrilateral ADBE, \overline{DE} is the perpendicular bisector of \overline{AB} . Which statement is always true?

1) $\angle ADC \cong \angle BDC$ 2) $\angle EAC \cong \angle DAC$ 3) $\overline{AD} \cong \overline{BE}$ 4) $\overline{AE} \cong \overline{AD}$

2. Line segment *EA* is the perpendicular bisector of \overline{ZT} , and \overline{ZE} and \overline{TE} are drawn.

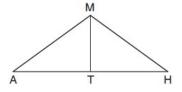
Which conclusion can *not* be proven?

- 1) \overline{EA} bisects angle ZET.
- 2) Triangle *EZT* is equilateral.
- 3) \overline{EA} is a median of triangle *EZT*.
- 4) Angle Z is congruent to angle T.

B

3. Segment *CD* is the perpendicular bisector of \overline{AB} at *E*. Which pair of segments does *not* have to be congruent?

- 1) $\overline{AD}, \overline{BD}$
- 2) $\overline{AC}, \overline{BC}$
- 3) $\overline{AE}, \overline{BE}$
- 4) \overline{DE} , \overline{CE}


4. In $\triangle ABC$, \overline{BD} is the perpendicular bisector of \overline{ADC} . Based upon this information, which statements below can be proven?

- I. BD is a median.
- II. BD bisects $\angle ABC$.
- III. $\triangle ABC$ is isosceles.
- 1) I and II, only
- 2) I and III, only
- 3) II and III, only
- 4) I, II, and III

5. In triangle *MAH* below, \overline{MT} is the perpendicular bisector of \overline{AH} .

Which statement is *not* always true?

1) $\triangle MAH$ is isosceles. 2) $\triangle MAT$ is isosceles. 3) \overline{MT} bisects $\angle AMH$. 4) $\angle A$ and $\angle TMH$ are complementary.

6. Segment AB is the perpendicular bisector of \overline{CD} at point M. Which statement is always true?

- 1) $\overline{CB} \cong \overline{DB}$
- 2) $\overline{CD} \cong \overline{AB}$
- 3) $\Delta ACD \cong \Delta BCD$
- 4) $\Delta ACM \cong \Delta BCM$