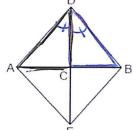


Date	
Geometry	

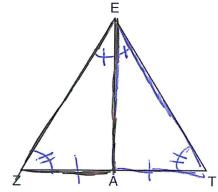
Perpendicular Bisector Multiple Choice

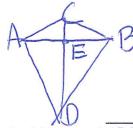
Perpendicular bisector creates


- -two pairs of congruent triangles so all of their corresponding parts are congruent due to CPCTC
- -two isosceles triangles

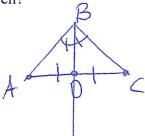
The top 2 small triangles are congruent and the top big triangle is isosceles. The bottom 2 small triangles are congruent and the bottom big triangle is isosceles.

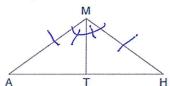
- 1. In the diagram below of quadrilateral ADBE, \overline{DE} is the perpendicular bisector of \overline{AB} . Which statement is always true?
- \bigcirc $\angle ADC \cong \angle BDC$
- 2) ∠EAC≅ ∠DAC


- 3) $\overline{AD} \cong \overline{BE}$
- 4) $\overline{AE} \cong \overline{AL}$

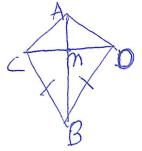

2. Line segment EA is the perpendicular bisector of \overline{ZT} , and \overline{ZE} and \overline{TE} are drawn.

Which conclusion can not be proven?


- 1) \overline{EA} bisects angle ZET.
- Triangle EZT is equilateral. >
- 3) \overline{EA} is a median of triangle EZT.
- 4) Angle Z is congruent to angle T.


- 3. Segment CD is the perpendicular bisector of \overline{AB} at E. Which pair of segments does *not* have to be congruent?
- 1) $\overline{AD}, \overline{BD}$
- 2) $\overline{AC}, \overline{BC}$
- $\begin{array}{c}
 3) \overline{AE}, \overline{BE} \\
 4) \overline{DE}, \overline{CE}
 \end{array}$

- 4. In $\triangle ABC$, \overline{BD} is the perpendicular bisector of \overline{ADC} . Based upon this information, which statements below can be proven?
- I. \overline{BD} is a median.
- II. \overline{BD} bisects $\angle ABC$.
- III. $\triangle ABC$ is isosceles.
- 1) I and II, only
- 2) I and III, only
- 3) II and III, only
- A) I, II, and III


- 5. In triangle MAH below, \overline{MT} is the perpendicular bisector of \overline{AH} . Which statement is *not* always true?
- 1) $\triangle MAH$ is isosceles. 2) $\triangle MAT$ is isosceles. 3) \overline{MT} bisects $\angle AMH$. 4) $\angle A$ and $\angle TMH$ are complementary.

6. Segment AB is the perpendicular bisector of \overline{CD} at point M. Which statement is always true?

- $\overline{CD} \cong \overline{AB} \times$
- 3) $\triangle ACD \cong \triangle BCD \times$

