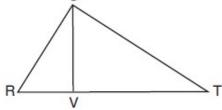
Name _____ Mr. Schlansky Date ______Geometry

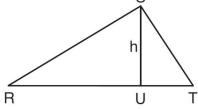
Determining If a Proportion Is Correct (Candy Corn and HLLS SAAS)


1. In right triangle RST below, altitude \overline{SV} is drawn to hypotenuse \overline{RT} . Which of the following proportions is true?

$$2) \ \frac{\overline{RT}}{\overline{RS}} = \frac{\overline{RS}}{\overline{VT}}$$

3)
$$\frac{\overline{RT}}{\overline{SV}} = \frac{\overline{SV}}{\overline{VT}}$$

4)
$$\frac{\overline{RT}}{\overline{ST}} = \frac{\overline{ST}}{\overline{VT}}$$

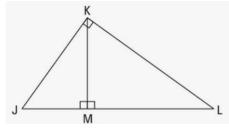

2. In right triangle RST below, altitude \overline{SU} is drawn to hypotenuse \overline{RT} . Which of the following proportions is *not* true?

1)
$$\frac{\overline{RU}}{\overline{SU}} = \frac{\overline{SU}}{\overline{UT}}$$

2)
$$\frac{\overline{SU}}{\overline{RU}} = \frac{\overline{RU}}{\overline{UT}}$$

3)
$$\frac{\overline{RT}}{\overline{RS}} = \frac{\overline{RS}}{\overline{RU}}$$

4)
$$\frac{\overline{TR}}{\overline{ST}} = \frac{\overline{ST}}{\overline{UT}}$$


3. In right triangle JKL below, altitude \overline{KM} is drawn to hypotenuse \overline{JL} . Which of the following proportions is *not* true?

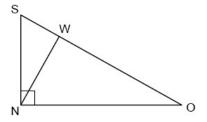
1)
$$\frac{\overline{JL}}{\overline{JK}} = \frac{\overline{JK}}{\overline{JM}}$$

$$2) \ \frac{\overline{JM}}{\overline{KM}} = \frac{\overline{KM}}{\overline{ML}}$$

3)
$$\frac{\overline{JL}}{\overline{KL}} = \frac{\overline{KL}}{\overline{JM}}$$

4)
$$\frac{\overline{ML}}{\overline{MK}} = \frac{\overline{MK}}{\overline{MJ}}$$

4. In right triangle SNO below, altitude \overline{NW} is drawn to hypotenuse \overline{SO} .


Which statement is *not* always true?

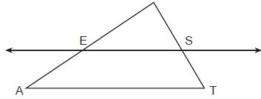
1) $\frac{SO}{SN} = \frac{SN}{SN}$

3)
$$\frac{SO}{ON} = \frac{ON}{OW}$$

$$\frac{SW}{NS} = \frac{NS}{OW}$$

4)
$$\frac{OW}{NW} = \frac{NW}{SW}$$

5. In the diagram below of $\triangle ACT$, $\stackrel{\longleftrightarrow}{ES}$ is drawn parallel to \overline{AT} such that E is on \overline{CA} and S is on CT.


Which statement is always true?

$$\frac{1)}{CA} = \frac{CS}{ST}$$

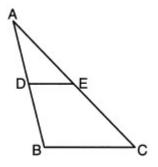
2)
$$\frac{CE}{ES} = \frac{EA}{AT}$$

3)
$$\frac{CE}{EA} = \frac{CS}{ST}$$

4) $\frac{CE}{ST} = \frac{EA}{CS}$

4)
$$\frac{CE}{ST} = \frac{EA}{CS}$$

6. In $\triangle ABC$ below, \overline{DE} is drawn such that D and E are on \overline{AB} and \overline{AC} , respectively.

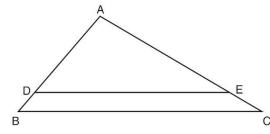

If $\overline{DE} \parallel \overline{BC}$, which equation will always be true?

$$1)\,\frac{AD}{DE}=\frac{DB}{BC}$$

$$3) \frac{AD}{BC} = \frac{DE}{DB}$$

1)
$$\frac{AD}{DE} = \frac{DB}{BC}$$
 3) $\frac{AD}{BC} = \frac{DE}{DB}$ 2) $\frac{AD}{DE} = \frac{AB}{BC}$ 4) $\frac{AD}{BC} = \frac{DE}{AB}$

$$4) \frac{AD}{BC} = \frac{DE}{AB}$$


7. In the diagram of $\triangle ABC$ shown below, $\overline{DE} \parallel \overline{BC}$. Which of the following statements is not true?

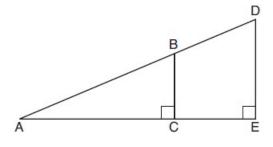
1)
$$\frac{\overline{AD}}{\overline{DE}} = \frac{\overline{AB}}{\overline{BC}}$$
 3) $\frac{\overline{AD}}{\overline{AE}} = \frac{\overline{DB}}{\overline{AC}}$ 2) $\frac{\overline{BC}}{\overline{DE}} = \frac{\overline{CA}}{\overline{EA}}$ 4) $\frac{\overline{DB}}{\overline{EC}} = \frac{\overline{AB}}{\overline{AC}}$

3)
$$\frac{\overline{AD}}{\overline{AE}} = \frac{\overline{DB}}{\overline{AC}}$$

$$2) \ \frac{\overline{BC}}{\overline{DE}} = \frac{\overline{CA}}{\overline{EA}}$$

4)
$$\frac{\overline{DB}}{\overline{EC}} = \frac{\overline{AB}}{\overline{AC}}$$

8. In the diagram below of right triangle AED, $\overline{BC} \parallel \overline{DE}$.


Which statement is always true?

$$\frac{1)}{BC} = \frac{DE}{AE}$$

$$\frac{AB}{AD} = \frac{BC}{DE}$$

3)
$$\frac{AC}{CE} = \frac{BC}{DE}$$

4)
$$\frac{DE}{BC} = \frac{DB}{AB}$$

