Parallelogram Proofs Part IV

1. In quadrilateral HOPE below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EJ} \cong \overline{OG}$, and \overline{TG} and \overline{YJ} are perpendicular to diagonal \overline{EO} at points G and J, respectively. Prove that $\overline{TG} \cong \overline{YJ}$.

2. In quadrilateral SACK, $\angle KSY \cong \angle ACH$, $\overline{SK} \cong \overline{AC}$, $\overline{SY} \cong \overline{CH}$. Prove $\angle SAH \cong \angle CKY$

3. In the diagram below of quadrilateral FACT, \overline{BR} intersects diagonal \overline{AT} at E, $\overline{AF} \parallel \overline{CT}$, and

 $\overline{AF} \cong \overline{CT}$. Prove (AB)(TE) = (AE)(TR)

4. Given: Quadrilateral MATH, $\overline{HM} \cong \overline{AT}$, $\overline{HT} \cong \overline{AM}$, $\overline{HE} \perp \overline{MEA}$, and $\overline{HA} \perp \overline{AT}$.

Prove: $TA \bullet HA = HE \bullet TH$

5. In the diagram of quadrilateral ABCD below, $\overline{AB} \cong \overline{CD}$, and $\overline{AB} \parallel \overline{CD}$. Segments CE and AF are drawn to diagonal \overline{BD} such that $\overline{BE} \cong \overline{DF}$. Prove: $\angle BAF \cong \angle DCE$.

6. Given: $\overline{AE} \cong \overline{CG}$, $\overline{BE} \cong \overline{DG}$, $\overline{AH} \cong \overline{CF}$, $\overline{AD} \cong \overline{CB}$

Prove: $\overline{EF} \cong \overline{GH}$

7. Given: Quadrilateral ABCD, \overline{AC} and \overline{EF} intersect at H, $\overline{AD} \parallel \overline{BC}$ and $\overline{AD} \cong \overline{BC}$. Prove:

(EH)(CH) = (FH)(AH)

8. Given: $\overline{AB} \cong \overline{DC}$, $\overline{AD} \cong \overline{BC}$, $\overline{AF} \cong \overline{GC}$, $\overline{BH} \cong \overline{DE}$

Prove: $\overline{EF} \cong \overline{GH}$

9. Given: Quadrilateral ABCD, $\overline{AB} \cong \overline{CD}$, $\overline{AB} \parallel \overline{CD}$, diagonal \overline{AC} intersects \overline{EF} at G, and

 $\overline{DE} \cong \overline{BF}$. Prove: G is the midpoint of \overline{EF} .

10. Given: $\overline{KC} \parallel \overline{IN}$, $\overline{KC} \cong \overline{IN}$, $\overline{AL} \perp \overline{KI}$, $\overline{TD} \perp \overline{CN}$. Prove $\overline{KL} \bullet \overline{NT} = \overline{DN} \bullet \overline{KA}$

