Name	Date
Mr. Schlansky	Geometry

Ratio of Corresponding Sides

- 1. The ratio of the corresponding sides of two similar polygons is 3:1. Find the ratio of their:
 - a) perimeters
 - b) areas
 - c) angles
- 2. The ratio of corresponding sides of two similar polygons is 2:7. Find the ratio of their:
 - a) perimeters
 - b) areas
 - c) angles
- 3. The ratio of the perimeters of two similar polygons is 5:2. Find the ratio of their:
 - a) corresponding sides
 - b) areas
 - c) angles
- 4. The ratio of the areas of two similar polygons is 9:4. Find the ratio of their:
 - a) corresponding sides
 - b) perimeters
 - c) angles
- 5. Two triangles are similar, and the ratio of each pair of corresponding sides is 2:1. Which statement regarding the two triangles is *not* true?
- 1) Their areas have a ratio of 4:1.
- 2) Their altitudes have a ratio of 2:1.
- 3) Their perimeters have a ratio of 2:1.
- 4) Their corresponding angles have a ratio of 2 : 1.
- 6. Given $\triangle ABC \sim \triangle DEF$ such that $\frac{AB}{DE} = \frac{3}{2}$. Which statement is *not* true?
- $\frac{1)}{EF} = \frac{3}{2}$
- $\frac{m\angle A}{m\angle D} = \frac{3}{2}$

- 3) $\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4}$ 4) $\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{3}{2}$
- 7. $\triangle ABC$ is similar to $\triangle DEF$. The ratio of the length of \overline{AB} to the length of \overline{DE} is 3:1. Which ratio is also equal to 3:1?

- $(1) \frac{m\angle A}{m\angle D} \qquad \qquad \underbrace{m\angle B}_{(2)} \frac{m\angle B}{m\angle F} \qquad \qquad \underbrace{\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF}}$
- perimeter of $\triangle ABC$ (4) perimeter of $\triangle DEF$

- 8. Given $\triangle ABC \cong \triangle DEF$, which statement is *not* always true?
- 1) $\overline{BC} \cong \overline{DF}$
- m∠A = m∠D
- 3) area of $\triangle ABC$ = area of $\triangle DEF$
- 4) perimeter of $\triangle ABC =$ perimeter of $\triangle DEF$
- 9. Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle R'J'M'?
- 1) area of 9 and perimeter of 15
- 2) area of 18 and perimeter of 36
- 3) area of 54 and perimeter of 36
- 4) area of 54 and perimeter of 108
- 10. Rectangle A'B'C'D' is the image of rectangle ABCD after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?
- 1) Rectangle A'B'C'D' has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle ABCD.
- Rectangle A'B'C'D' has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle ABCD.
- Rectangle A'B'C'D' has an area that is $\frac{2}{3}$ the area of rectangle ABCD.
- 4) Rectangle A'B'C'D' has an area that is $\frac{3}{2}$ the area of rectangle ABCD.
- 11. A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?
- 1) The area of the image is nine times the area of the original triangle.
- 2) The perimeter of the image is nine times the perimeter of the original triangle.
- 3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
- 4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.
- 12. If $\triangle ABC$ is dilated by a scale factor of 3, which statement is true of the image $\triangle A'B'C'$?
- 1) 3A'B' = AB
- 2) B'C' = 3BC
- 3) $\mathbf{m} \angle A' = 3(\mathbf{m} \angle A)$
- 4) $3(m\angle C') = m\angle C$