Name	
Mr. Schlansky	

Date Geometry

Ratios with Perimeter and Area

- 1. The scale factor of a triangle dilation is 3. What is the scale factor of their:
 - a) perimeters
 - b) areas
 - c) angles
- 2. The ratio of the sides of similar triangles is 5:1. What is the ratio of their:
 - a) perimeters
 - b) areas
 - c) angles
- 3. The scale factor of a triangle dilation is $\frac{1}{2}$. What is the scale factor of their:
 - a) perimeters
 - b) areas
 - c) angles
- 4. The ratio of the sides of similar triangles is 4:3. What is the ratio of their:
 - a) perimeters
 - b) areas
 - c) angles
- 5. Two triangles are similar, and the ratio of each pair of corresponding sides is 2:1. Which statement regarding the two triangles is *not* true?
- 1) Their areas have a ratio of 4:1.
- 2) Their altitudes have a ratio of 2:1.
- 3) Their perimeters have a ratio of 2:1.
- 4) Their corresponding angles have a ratio of 2 : 1.
- 6. Given $\triangle ABC \sim \triangle DEF$ such that $\frac{AB}{DE} = \frac{3}{2}$. Which statement is *not* true?
- $\frac{m\angle A}{m\angle D} = \frac{3}{2}$

- 3) $\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4}$ 4) $\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{3}{2}$
- 7. $\triangle ABC$ is similar to $\triangle DEF$. The ratio of the length of \overline{AB} to the length of \overline{DE} is 3:1. Which ratio is also equal to 3:1?
- $(1) \frac{m \angle A}{m \angle D} \qquad \frac{m \angle B}{m \angle F}$
- $\frac{ ext{area of } \triangle ABC}{(3)}$ area of $\triangle DEF$
- $\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF}$