Name	
Mr. Schlansky	

Sequences of Rigid Motions on the Grid

1. As graphed on the set of axes below, $\triangle A \, 'B \, 'C'$ is the image of $\triangle ABC$ after a sequence of transformations.

Is $\triangle A'B'C'$ congruent to $\triangle ABC$? Use the properties of rigid motion to explain your answer.

2. On the set of axes below, $\triangle ABC \cong \triangle DEF$. Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle DEF$. Are the triangles congruent? Explain your answer.

A set of transformations mapped ΔLMN from the coordinates of L(2, 3), M(6, 0), and N(-1, -1) to the new coordinates of L"(-4, 2), M"(-8, -1), and N"(-1, -2). Give an ordered list of transformations that would produce ΔL"M"N" from ΔLMN. [The use of the grid is optional.]

4. The graph below shows $\triangle ABC$ with A(-4,-3), B(0,0), and C(2,-3) and $\triangle DEF$ with D(3,1), E(6,-3), and F(3,-5). Determine a sequence of rigid motions that will map $\triangle DEF$ onto $\triangle ABC$.

5. On the set of axes below, $\triangle ABC \cong \triangle STU$. Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle STU$. Are the triangles congruent? Explain your answer.

6. In the diagram below, $\triangle ABC$ and $\triangle PQR$ are graphed. Is $\triangle ABC \cong \triangle PQR$? Justify your answer.

7. Describe a sequence of transformations that will map $\triangle ABC$ onto $\triangle DEF$ as shown below. Are the triangles congruent? Explain your answer.

8. On the set of axes below, $\triangle ABC$ is graphed with coordinates A(-2,-1), B(3,-1), and C(-2,-4). Triangle QRS, the image of $\triangle ABC$, is graphed with coordinates Q(-5,2), R(-5,7), and S(-8,2).

Describe a sequence of transformations that would map $\triangle ABC$ onto $\triangle QRS$. Are the triangles congruent? Explain your answer.

