Similar Triangles Review Sheet

1. Triangle SUN has coordinates S(0,6), U(3,5), and N(3,0). On the accompanying grid, draw and label $\triangle SUN$. Then, graph and state the coordinates of $\triangle S'U'N'$, the image of $\triangle SUN$ after a dilation of 2 centered at (-1,4).

S'(1,8) Count from the center

O'(7,6) OF dilation to each

N'(7,-4) Point and do that

the scale factor

number of times.

2. Triangle ABC has coordinates A(2,1), B(6,1), C(5,3). What is the image of this triangle after a dilation of 4 centered at (6,4). Graph both the image and the pre image.

3. In the diagram below, \overline{AD} intersects \overline{BE} at C, and $\overline{AB} \parallel \overline{DE}$.

If CD = 6.6 cm, DE = 3.4 cm, CE = 4.2 cm, and BC = 5.25 cm, what is the length of \overline{AC} , to the nearest hundredth of a centimeter?

4. In the diagram below, $\overline{AB} \parallel \overline{DE}$. If AC = 2, CD = 6, and CE = 3, what is BC?

5. In triangle TOR, Y is on \overline{TR} , and D is on \overline{TO} so that $\angle TYD \cong \angle ROT$. If $\overline{TY} = 2$, $\overline{YR} = 6$, and $\overline{TD} = 4$, find \overline{TO} .

6. In $\triangle ABC$ shown below, $\angle ACB$ is a right angle, E is a point on \overline{AC} , and \overline{ED} is drawn perpendicular to hypotenuse \overline{AB} . If AB = 9, BC = 6, and DE = 4, what is the length of \overline{AE} ?

8. In the diagram of ABC shown below, E and F are the midpoints of \overline{AC} and \overline{BC} , respectively.

If EF = 2x + 8 and AB = 7x - 2, what is AB?

9. If $\overline{AD} = 3$ and $\overline{AB} = 27$, find \overline{CD} to the nearest tenth.

10. In right triangle RST below, altitude \overline{SV} is drawn to hypotenuse \overline{RT} . If RV = 4.1 and TV = 10.2, what is the length of \overline{ST} , to the *nearest tenth*?

13. To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram. Use the surveyor's information to determine and state the distance from point B to point

14. In the diagram of $\triangle ABC$ below, \overline{DE} is parallel to \overline{AB} , CD = 15, AD = 9, and AB = 40. Find the length of \overline{DE} .

E

19. In right triangle JKL below, altitude \overline{KM} is drawn to hypotenuse \overline{JL} . Which of the following proportions is *not* true?

1)
$$\frac{\overline{JL}}{\overline{JK}} = \frac{\overline{JK}}{\overline{JM}} \frac{1}{L_1} = \frac{L_1}{S_1}$$
 2) $\frac{\overline{JM}}{\overline{KM}} = \frac{\overline{KM}}{\overline{ML}} = \frac{S_1}{S_2}$

$$\underbrace{3}_{\overline{KL}}^{\overline{JL}} = \underbrace{\overline{KL}}_{\overline{JM}} \underbrace{L_{2}}_{L_{2}} = \underbrace{L_{3}}_{\overline{S_{1}}} \times 4) \underbrace{\overline{ML}}_{\overline{MK}} = \underbrace{\overline{MK}}_{\overline{MJ}} \underbrace{S_{2}}_{\overline{A}} = \underbrace{A}_{\overline{S_{1}}}$$

20. In right triangle SNO below, altitude \overline{NW} is drawn to hypotenuse \overline{SO} .

Which statement is not always true?

1)
$$\frac{SO}{SN} = \frac{SN}{SW} + \frac{L_1}{L_1} + \frac{L_2}{S}$$

$$\frac{SW}{NS} = \frac{NS}{OW} \qquad \frac{S_1}{L_1} = \frac{L_1}{S_2} \times \frac{S_1}{S_2}$$

3)
$$\frac{SO}{ON} = \frac{ON}{OW} \frac{H}{L_2} \frac{L_2}{S_2}$$
4)
$$\frac{OW}{NW} = \frac{NW}{SW} \frac{S_2}{S_2} \frac{A}{S_2}$$

4)
$$\frac{OW}{NW} = \frac{NW}{SW} \frac{S_2}{A} = \frac{A}{S_1}$$

21. Determine whether the following triangles are similar. Explain your answer.

22. In the diagram below, $\overline{AR} = 15$, $\overline{RF} = 12$, $\overline{DO} = 10$, $\overline{OG} = 8$, and $\angle ARF \cong \angle DOG$. Must $\triangle ARF \sim \triangle DOG$? Explain your answer.

23. After a dilation with center (0, 0), the image of \overline{DB} is $\overline{D'B'}$. If DB = 4.5 and D'B' = 18, what is the scale factor of this dilation?

24. \overline{DR} is dilated centered at point D such that $\overline{DR} = 8$ and $\overline{D'R'} = 12$. What is the scale factor of the dilation?

Scale factor = irrage original = 12 = 3

25. Triangle JOY has a perimeter of 10 and an area of 12. What is the perimeter and area of triangle JOY after a dilation by a scale factor of 2?

image perimeter = $\frac{1}{2}$ and $\frac{1}{2}$ ariginal perimeter (scale factor) P = 10(2) = 20 image alog = $\frac{1}{2}$ original alog (scale factor) $A = 12(2)^2 = 48$

26. Quadrilateral CAMI has a perimeter of 20 and an area of 15. What is the perimeter and area of quadrilateral CAMI after a dilation by a scale factor of 4?

P = 20(4) = 80 $A = 15(4)^3 = 240$

