## Sketching Polynomial Graphs Regents Practice

1. Consider the function  $p(x) = 3x^3 + x^2 - 5x$  and the graph of y = m(x) below.



Which statement is true?

- 1) p(x) has three real roots and m(x) has two real roots.
- 2) p(x) has one real root and m(x) has two 4) p(x) has three real roots and m(x) has real roots.
- 3) p(x) has two real roots and m(x) has three real roots.
  - four real roots.

2. Consider the end behavior description below.

- as  $x \to -\infty$ ,  $f(x) \to \infty$
- as  $x \to \infty$ ,  $f(x) \to -\infty$ Which function satisfies the given conditions?

1)  $f(x) = x^4 + 2x^2 + 1$ 









Which statement about this function is incorrect?

- 1) The degree of the polynomial is even.  $\nu$
- There is a positive leading coefficient.
- 3) At two pH values, there is a relative  $\checkmark$ maximum value.
- 4) There are two intervals where the function is decreasing.
- 5. Which graph has the following characteristics?
- three real zeros as  $x \to -\infty$ ,  $f(x) \to$









6. The graph of the function p(x) is sketched below.

Which equation could represent p(x)?  $p(x) = (x^2 - 9)(x - 2)$ 2)  $p(x) = x^3 - 2x^2 + 9x + 18$ 

$$p(x) = (x^2 - 9)(x - 2)$$

2) 
$$p(x) = x^3 - 2x^2 + 9x + 18$$

3) 
$$p(x) = (x^2 + 9)(x - 2)$$
  
4)  $p(x) = x^3 + 2x^2 - 9x - 18$ 

4) 
$$p(x) = x^3 + 2x^2 - 9x - 18$$



7. Which graph represents a polynomial function that contains  $x^2 + 2x + 1$  as a factor?





3)



2)



4)



8. If a, b, and c are all positive real numbers, which graph could represent the sketch of the graph of  $p(x) = -a(x+b)(x^2 - 2cx + c^2)$ ?





3)



2)



4)





- 1) As  $x \to -\infty$ ,  $f(x) \to \infty$ , as  $x \to \infty$ ,  $f(x) \to \infty$ , and the graph has 3 x-intercepts.
  - As  $x \to -\infty$ ,  $f(x) \to -\infty$ , as  $x \to \infty$ ,  $f(x) \to \infty$ , and the graph has 3 x-intercepts.
- 3) As  $x \to -\infty$ ,  $f(x) \to \infty$ , as  $x \to \infty$ ,  $f(x) \to -\infty$ , and the graph has 4 x-intercepts.
- 4) As  $x \to -\infty$ ,  $f(x) \to -\infty$ , as  $x \to \infty$ ,  $f(x) \to \infty$ , and the graph has 4 x-intercepts.  $(x \to \infty, f(x) \to \infty, f(x) \to \infty, f(x) \to \infty)$

10. The graph below shows the polynomial 
$$y = p(x)$$
.

The factors of p(x) are

(1) 
$$(x+2)$$
,  $(x-3)$ , and  $(x+6)$ 

(2) 
$$(x-2)$$
,  $(x+3)$ , and  $(x+6)$ 

(3) 
$$(x-2)$$
,  $(x-2)$ , and  $(x+6)$ 

$$(x+2)$$
,  $(x+2)$ , and  $(x-6)$ 



## 11. A sketch of r(x) is shown below.

An equation for r(x) could be

1) 
$$r(x) = (x-a)(x+b)(x+c)$$

3) 
$$r(x) = (x+a)(x-b)(x-c)$$

2) 
$$r(x) = (x+a)(x-b)(x-c)^2$$





12. On the grid below, sketch a cubic polynomial whose zeros are 1, 3, and -2.



13. The zeros of a quartic polynomial function are 2, -2, 4, and -4. Use the zeros to construct a possible sketch of the function, on the set of axes below.



14. The zeros of a quartic polynomial function h are  $-1, \pm 2$ , and 3. Sketch a graph of y = h(x) on the grid below.



- 15. On the axes below, sketch a possible function p(x) = (x-a)(x-b)(x+c), where a, b, and c are positive, a > b, and p(x) has a positive y-intercept of d. Label all intercepts.

