

Date Geometry

## Special Angles in Circles

1. In the diagram of circle A shown below, chords  $\overline{CD}$  and  $\overline{EF}$  intersect at G, and chords CE and FD are drawn.



Which statement is *not* always true?

D CG = FG × not radii

LCEG = LFDGV & inscribed ander that intercept the same are are congruent

FD / one pair collesponds, one pair is in the same triangle

- ΔCEG~ ΔFDGV, the angles are the same b/c inscribed angles that intercept the same arc are congruent and vertical angles are congruent.
- 11. In circle O shown below, diameter AC is perpendicular to  $\overline{CD}$  at point C, and chords AB, BC, AE, and CE are drawn.



- Which statement is not always true?

  1)  $\angle ACB \cong \angle BCD \times$  they don't intercept the same or congruent arcs.

  2)  $\angle ABC \cong \angle ACD \times$  they are both with anyles An angle inscribed to a semi-vive and tengent Ideameter.

  3)  $\angle BAC \cong \angle DCB \times$  They both intercept BC
- 4) ZCBA = ZAEC V They are both right angles. Angles inscripal to semi-circles

3. In the diagram below,  $\overline{DC}$ ,  $\overline{AC}$ ,  $\overline{DOB}$ ,  $\overline{CB}$ , and  $\overline{AB}$  are chords of circle O,  $\overrightarrow{FDE}$  is tangent at point D, and radius  $\overline{AO}$  is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."



Which angle is Sam referring to?

- ∠AOB
- ∠BAC
- 3) ∠DCB
- 4) ZFDB this is a nont anoly but it is a tangent intersecting a diameter.
- 4. In circle O shown below,  $\overline{AE}$  is a diameter,  $\overline{SB}$  is a tangent, and chord  $\overline{AR}$  and  $\overline{RE}$  are drawn.



Which of the following statements is true?

1)  $\angle EAR \cong \angle RABX$  different arcs

2)  $\angle REA \cong \angle SAEX$  different arcs

2)  $\angle REA \cong \angle SAEX$  different arcs

Semi-circle and tangent diameter.

5. In circle O shown below,  $\overline{BR}$  is a diameter and chords  $\overline{BU}$ ,  $\overline{IU}$ , and  $\overline{IR}$  are drawn.



1)  $\angle BUI \cong \angle BRI / beth interest B) \angle UBT \cong \angle BRI \times don't intercept the same or congruent arcs$  $2) <math>\angle ITR \cong \angle BTU / \text{Vertice}$  4)  $\angle RBU \cong \angle RIU/both intercept RU$ angles

6. In circle O shown below,  $\overline{GM}$  is a diameter and chords  $\overline{EM}$ ,  $\overline{OG}$ ,  $\overline{EG}$  and  $\overline{EO}$  are drawn.



Which of the following statements is not true?

1)  $\angle MEO \cong \angle OGM$  which to a  $\angle ORE$  with the state of the sides are congruent.

2)  $\angle GRM \cong \angle ORE$  with the state of the sides are congruent.

4)  $\angle GEM$  is a right angle angle inscribed to a Semi-circle. angles





2)  $\angle WST \cong \angle EWT$  bith right  $\angle A$ )  $\angle TWS \cong \angle STW$  and inscribed to semi-cials and fintercept the

tangent/diameter



8. In circle M below, diameter  $\overline{AC}$ , chords  $\overline{AB}$  and  $\overline{BC}$ , and radius  $\overline{MB}$  are drawn.

1)  $\triangle ABC$  is a right triangle. and inscribed to a semi-circle
2)  $\triangle ABM$  is isosceles. All radii are conjunent
3)  $mBC = m\angle BMC$  (Partal angle = intercepted arc

 $\widehat{\text{m}AB} = \frac{1}{2} \text{m} \angle ACB$ 

Im AB=m2ACB



9. In the diagram below,  $\overline{BC}$  is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement

must always be true?

1)  $\triangle BCD$  is a right triangle and inscribed to a semi-circle

(X )  $\triangle BCD$  is an isosceles triangle. (X )  $\triangle BAD$  and (X ) are similar triangles. (X ) (X )



