Name Schlansky X Ualu Mr. Schlansky Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Tyterset Date log Algebra II
Solving Systems Graphically Using TI	
1. To the <i>nearest tenth</i> , the value of x that so 1) 2.5 2) 2.6	atisfies $2^{x} = -2x + 11$ is 3) 5.8 4) 5.9
2. For which values of <i>x</i> , rounded to the <i>ned</i> 2.29 and 3.63 2) 2.37 and 3.54	3) 2.84 and 3.17 41 1L 4) 2.92 and 3.06
 3. For which approximate value(s) of x will 1) 5, 1 2) -2.41, 0.41 	$\log(x+5) = x-1 - 3?$ In the last of the section o
4. Which value, to the <i>nearest tenth</i> , is an approx $f(x) = \frac{5}{x-3}$ and $g(x) = 2(1.3)^x$? The Section 1) 3.2	eximate solution for the equation $f(x) = g(x)$, if 3) 4.0 4) 5.6
5. If $p(x) = 2\ln(x) - 1$ and $m(x) = \ln(x + 6)$, the 1) 1.65 2) 3.14	what is the solution for $p(x) = m(x)$? 32 5.62 4) no solution
q(x) = 3x + 8? 1) -3.9 2) -1.1	a solution of $p(x) = q(x)$ if $p(x) = x^3 + 3x^2 - 3x - 1$ and 3) 2.1 4) 4.7 $x = -3.9$ $x = -3.1$
7. If $f(x) = g(x) f(x) = 3 x - 1$ and $g(x) =$	$0.03x^3 - x + 1$, an approximate solution for the

equation f(x) = g(x) is

1) 1.96

<u>(2)</u> 11.29

-0.99 1.96) * Adjust window 11.29,32.87)
Only X Coorlingle

8. Given:
$$h(x) = \frac{2}{9}x^3 + \frac{8}{9}x^2 - \frac{16}{13}x + 2$$

$$k(x) = -|0.7x| + 5$$
This is the second of the second

State the solutions to the equation h(x) = k(x), rounded to the nearest hundredth.

$$y = -1.13$$

$$y = 1.75$$
9. If $f(t) = 325e^{-.0735t} + 75$ and $g(t) = 375e^{-.0817t} + 75$, for what value of t does $f(t) = g(t)$ rounded to the nearest tenth?

ZOOM FIT

10. A technology company is comparing two plans for speeding up its technical support time. Plan A can be modeled by the function $A(x) = 15\sqrt{(0.98)^x}$ and plan B can be modeled by the function $B(x) = 11(0.99)^x$ where x is the number of customer service representatives employed by the company and A(x) and B(x) represent the average wait time, in minutes, of each customer. To the nearest integer, solve the equation A(x) = B(x).

*Xadjust X Max and of Max

11. Website popularity ratings are often determined using models that incorporate the number of visits per week a website receives. One model for ranking websites is $P(x) = \log(x-4)$, where x is the number of visits per week in thousands and P(x) is the website's popularity rating.

An alternative rating model is represented by $R(x) = \frac{1}{2}x - 6$, where x is the number of visits per week in thousands. For what number of weekly visits will the two models provide the same rating?

*adjust y max

Intersect
$$X=14$$
 $14,000$

12. The value of a certain small passenger car based on its use in years is modeled by $V(t) = 28482.698(0.684)^t$, where V(t) is the value in dollars and t is the time in years. Zach had to take out a loan to purchase the small passenger car. The function $Z(t) = 22151.327(0.778)^t$, where Z(t) is measured in dollars, and t is the time in years, models the unpaid amount of Zach's loan over time. State when V(t) = Z(t), to the nearest hundredth,

* Zoom Fit