Triangle Proofs Multiple Choice 1. In the diagram below, \overrightarrow{FE} bisects \overline{AC} at B, and \overrightarrow{GE} bisects \overline{BD} at C. Which statement is always true? 2) $$\overline{FB} \cong \overline{EB} \times$$ 3) $$\overrightarrow{BD}$$ bisects \overrightarrow{GE} at $C. \times$ 4) $$\stackrel{\longleftrightarrow}{AC}$$ bisects \overline{FE} at B . 2. Segment CD is the perpendicular bisector of \overline{AB} at E. Which pair of segments does *not* have to be congruent? 1) $$\overline{AD}, \overline{BD}$$ 2) $$\overline{AC}, \overline{BC}$$ 3) $$\overline{AE}, \overline{BE}$$ 3. Given: $\triangle ABE$ and $\triangle CBD$ shown in the diagram below with $\overline{DB} \cong \overline{BE}$ Which statement is needed to prove $\triangle ABE \cong \triangle CBD$ using only SAS \cong SAS? 1) $$\angle CDB \cong \angle AEB$$ 2) $$\angle AFD \cong \angle EFC$$ $$AD \cong \overline{CE}$$ 4. In the diagram below, AKS, NKC, AN, and SC are drawn such that AN ≈ SC. Which additional statement is sufficient to prove △KAN ≈ △KSC by AAS? 1) AS and NC bisect each other. 2) K is the midpoint of NC. Ned an angle 5. In the diagram below, \overline{AC} and \overline{BD} intersect at E. Which information is always sufficient to prove $\triangle ABE \cong \triangle CDE$? 1) $\overline{AB} \parallel \overline{CD}$ 3) E is the midpoint of \overline{AC} . - 2) $\overline{AB} \cong \overline{CD}$ and $\overline{BE} \cong \overline{DE}$ - \overline{BD} and \overline{AC} bisect each other. 6. She was given that $\angle A \cong \angle EDF$, and has already proven $\overline{AB} \cong \overline{DE}$. Which pair of corresponding parts and triangle congruency method would *not* prove $\triangle ABC \cong \triangle DEF$? 1) $\overline{AC} \cong \overline{DF}$ and SAS ν 3) $\angle C \cong \angle F$ and AAS 2) $\overline{BC} \cong \overline{EF}$ and SAS \times 4) $\angle CBA \cong \angle FED$ and ASA | 7. Triangles JOE and SAM are drawn such that $\angle E \cong \angle M$ and $\overline{EJ} \cong \overline{MS}$. Which mapping would not always lead to $\triangle JOE \cong \triangle SAM$? 1) $\angle J$ maps onto $\angle S \swarrow ASA$ 3) \overline{EO} maps onto $\overline{MA} \swarrow SAS$ 2) $\angle O$ maps onto $\angle A \swarrow ASS$ 3) \overline{EO} maps onto $\overline{SA} \swarrow ASS$ | |--| | SHE SHAM | | 8. In the two distinct acute triangles ABC and DEF , $\angle B \cong \angle E$. Triangles ABC and DEF are congruent when there is a sequence of rigid motions that maps 1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$, AAA 2) AC onto \overline{DF} , and \overline{BC} onto \overline{EF} ASA 4) point A onto point D , and \overline{AB} onto \overline{DE} ASA 4) point A onto point D , and \overline{AB} onto \overline{DE} | | 9. In $\triangle ABC$, \overline{BD} is the perpendicular bisector of \overline{ADC} . Based upon this information, which statements below can be proven? I. \overline{BD} is a median. $A\overline{D} = \overline{DC}$ II. \overline{BD} bisects $\angle ABC$. $\overline{ABD} = \overline{BC}$ 1) I and II, only 2) I and III, only 3) II and III, only 4) I, II, and III | | 10. Line segment EA is the perpendicular bisector of \overline{ZT} , and \overline{ZE} and \overline{TE} are drawn. Which conclusion can not be proven? 1) EA bisects angle ZET. / ZEASCIEA 2) Triangle EZT is equilateral. | | 3) EA is a median of triangle EZT. 4) Angle Z is congruent to angle T. ZA SAT ZA SAT ZA SAT T |