Writing the Equation of a Quadratic Equation Given the Roots

Write an equation whose roots are:

1.
$$x = 3$$
, $x = -2$

2)
$$x = -1$$
, $x = -4$

3.
$$x = \frac{1}{2}, 2$$

4.
$$x = -2, \frac{4}{3}$$

5.
$$x = 6 \pm \sqrt{3}$$

6.
$$x = -4 \pm \sqrt{6}$$

7.
$$x = -2 \pm 5i$$

8.
$$x = 3 \pm 6i$$

9.
$$x = 2 \pm \sqrt{5}$$

10.
$$x = \frac{1}{3}, \frac{-1}{2}$$

11.
$$x = -4 \pm i$$

12.
$$5 \pm 2\sqrt{3}$$

13. Juan has been told to write a quadratic equation where the sum of the roots is equal to -3 and the product of the roots is equal to -9. Which equation meets these requirements?

1)
$$x^2 + 3x + 9 = 0$$

3)
$$2x^2 + 6x - 18 = 0$$

2)
$$x^2 - 12x + 27 = 0$$

1)
$$x^2 + 3x + 9 = 0$$

2) $x^2 - 12x + 27 = 0$
3) $2x^2 + 6x - 18 = 0$
4) $(x+3)(x+9) = 0$

14. Which equation has the complex number 4-3i as a root?

1)
$$x^2 + 6x - 25 = 0$$

2) $x^2 - 6x + 25 = 0$
3) $x^2 + 8x - 25 = 0$
4) $x^2 - 8x + 25 = 0$

3)
$$x^2 + 8x - 25 = 0$$

2)
$$x^2 - 6x + 25 = 0$$

4)
$$x^2 - 8x + 25 = 0$$

15. For which equation is the sum of the roots equal to the product of the roots?

1)
$$x^2 + x + 1 = 0$$

3)
$$x^2 - 8x - 4 = 0$$

1)
$$x^2 + x + 1 = 0$$

2) $x^2 + 3x - 6 = 0$
3) $x^2 - 8x - 4 = 0$
4) $x^2 - 4x + 4 = 0$

4)
$$x^2 - 4x + 4 = 0$$