$\qquad$ Date $\qquad$
Mr. Schlansky
Algebra II

## Advanced Trig Ratios Regents Practice

1. If $\cos \theta=-\frac{3}{4}$ and $\theta$ is in Quadrant III, then $\sin \theta$ is equivalent to
1) $-\frac{\sqrt{7}}{4}$
2) $\frac{\sqrt{7}}{4}$
3) $-\frac{5}{4}$
4) $\frac{5}{4}$
2. If the terminal side of angle $\theta$, in standard position, passes through point $(-4,3)$, what is the numerical value of $\sin \theta$ ?
1) $\frac{3}{5}$
2) $\frac{4}{5}$
3) $-\frac{3}{5}$
4) $-\frac{4}{5}$

3 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, $\theta$, intercepts the circle in Quadrant II at point $C$. The $y$-coordinate of point $C$ is 8 . What is the value of $\cos \theta$ ?

1) $-\frac{3}{5}$
2) $-\frac{3}{4}$
3) $\frac{3}{5}$
4) $\frac{4}{5}$
4. Given $\cos \theta=\frac{7}{25}$, where $\theta$ is an angle in standard position terminating in quadrant IV, and $\sin ^{2} \theta+\cos ^{2} \theta=1$, what is the value of $\tan \theta$ ?
1) $-\frac{24}{25}$
2) $-\frac{24}{7}$
3) $\frac{24}{25}$
4) $\frac{24}{7}$
5. Given that $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\sin \theta=-\frac{\sqrt{2}}{5}$, what is a possible value of $\cos \theta$.
1) $\frac{5+\sqrt{2}}{5}$
2) $\frac{\sqrt{23}}{5}$
3) $\frac{3 \sqrt{3}}{5}$
4) $\frac{\sqrt{35}}{5}$
6. Given $\cos A=\frac{3}{\sqrt{10}}$ and $\cot A=-3$, determine the value of $\sin A$ in radical form.
7. An angle, $\theta$, is in standard position and its terminal side passes through the point $(2,-1)$. Find the exact value of $\sin \theta$.
8. A circle centered at the origin has a radius of 4 units. The terminal side of an angle, $\theta$, intercepts the circle in Quadrant III at point $P$. The $x$-coordinate of point $P$ is 2 . What is the value of $\cos \theta$ ?
9. The terminal side of $\theta$, an angle in standard position, intersects the unit circle at $P\left(-\frac{1}{3},-\frac{\sqrt{8}}{3}\right)$. What is the value of $\sec \theta$ ?
1) -3
2) $-\frac{3 \sqrt{8}}{8}$
3) $-\frac{1}{3}$
4) $-\frac{\sqrt{8}}{3}$
10. Point $M\left(t, \frac{4}{7}\right)$ is located in the second quadrant on the unit circle. Determine the exact value of $t$.
