Name _____ Mr. Schlansky Date _____ Algebra II

Advanced Trig Ratios Regents Practice

1. If
$$\cos \theta = -\frac{3}{4}$$
 and θ is in Quadrant III, then $\sin \theta$ is equivalent to
1) $-\frac{\sqrt{7}}{4}$
2) $\frac{\sqrt{7}}{4}$
4) $\frac{5}{4}$

2. If the terminal side of angle θ , in standard position, passes through point (-4, 3), what is the numerical value of $\sin \theta$?

1) $\frac{3}{5}$ 3) $-\frac{3}{5}$ 2) $\frac{4}{5}$ 4) $-\frac{4}{5}$

3 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ , intercepts the circle in Quadrant II at point *C*. The *y*-coordinate of point *C* is 8. What is the value of $\cos \theta$?

$1) - \frac{3}{5}$	3) $\frac{3}{5}$
$(2) - \frac{3}{4}$	4) $\frac{4}{5}$

4. Given $\cos \theta = \frac{7}{25}$, where θ is an angle in standard position terminating in quadrant IV, and $\sin^2 \theta + \cos^2 \theta = 1$, what is the value of $\tan \theta$? 1) $-\frac{24}{25}$ 2) $-\frac{24}{7}$ 3) $\frac{24}{25}$ 4) $\frac{24}{7}$

5. Given that $\sin^2 \theta + \cos^2 \theta = 1$ and $\sin \theta = -\frac{\sqrt{2}}{5}$, what is a possible value of $\cos \theta$?

1) $\frac{5+\sqrt{2}}{5}$ 2) $\frac{\sqrt{23}}{5}$ 3) $\frac{3\sqrt{3}}{5}$ 4) $\frac{\sqrt{35}}{5}$ 6. Given $\cos A = \frac{3}{\sqrt{10}}$ and $\cot A = -3$, determine the value of $\sin A$ in radical form.

7. An angle, θ , is in standard position and its terminal side passes through the point (2,-1). Find the *exact* value of sin θ .

8. A circle centered at the origin has a radius of 4 units. The terminal side of an angle, θ , intercepts the circle in Quadrant III at point *P*. The *x*-coordinate of point *P* is 2. What is the value of $\cos \theta$?

9. The terminal side of θ , an angle in standard position, intersects the unit circle at $P\left(-\frac{1}{3}, -\frac{\sqrt{8}}{3}\right)$. What is the value of sec θ ?

10. Point $M\left(t, \frac{4}{7}\right)$ is located in the second quadrant on the unit circle. Determine the exact value of *t*.