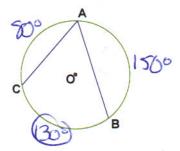
Circles Regents Review

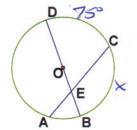
1. In circle O, $mCA = 80^{\circ}$ and $mAB = 150^{\circ}$. Find mBC

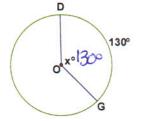
$$1501801 \times = 360$$

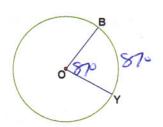
 $2301 \times = 360$
 -330
 $X = 130$

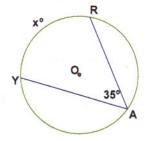
2. In circle O, $\overrightarrow{mDC} = 75^{\circ}$, find \overrightarrow{mCB}

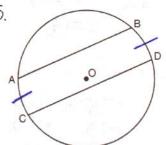

3. If $\overrightarrow{DG} = 130^{\circ}$, find the measure of $\angle DOG$.



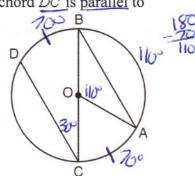

4. If \angle BOY = 87°, find the measure of BY.




5. If $\angle RAY = 35^{\circ}$, find \overrightarrow{RY}


6. In the diagram below of circle O, chord \overline{AB} chord \overline{CD} , and chord \overline{CD} chord \overline{EF} .

Which statement must be true?



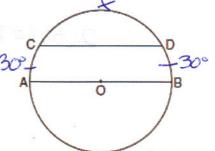
7. In the diagram below of circle O, chord \overline{AB} is parallel to chord \overline{CD} .

Which statement must be true?

- $\widehat{AB} \cong \widehat{CD}$
- $\overline{AB} \cong \overline{CD}$
- ABD ≅ CDB
- 8. In the diagram below of circle O with diameter \overline{BC} and radius \overline{OA} , chord \overline{DC} is parallel to chord BA.

If $m\angle BCD = 30^{\circ}$, determine and state $m\angle AOB$.

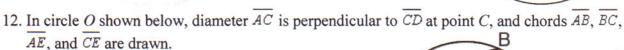
9. In the diagram of circle O below, chords \overline{AB} and \overline{CD} are parallel, and \overline{BD} is a diameter of the circle.


If $\widehat{mAD} = 60$, what is $m\angle CDB$?

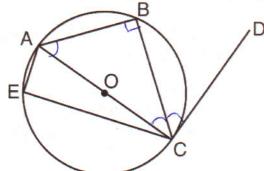
- 1) 20
- 27 30
- =30°
- 3) 60
- 10. In the diagram of circle O below, chord \overline{CD} is parallel to diameter \overline{AOB} and $\overline{mAC} = 30$.

What is mCD 1) 150

- 27 120

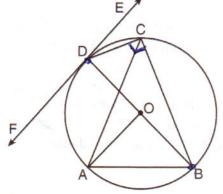

- 3) 100 4) 60

11. In the diagram of circle A shown below, chords \overline{CD} and \overline{EF} intersect at G, and chords \overline{CE} and FD are drawn.


Which statement is not always true?

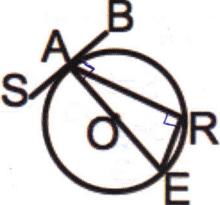
- 2) LCEG = LFDG inscribed to some are v
- 3) $\frac{CE}{EG} = \frac{FD}{DG}$ In proportion
- 4) △CEG ~ △FDG ✓

Which statement is not always true?


- 2) ZABC = ZACD inscribed to digneter/tangent-digneter/
- 3) ZBAC = ZDCB inscribal to sume arc
- 4) ZCBA = ZAEC both inscribed to diameter

13. In the diagram below, \overline{DC} , \overline{AC} , \overline{DOB} , \overline{CB} , and \overline{AB} are chords of circle O, \overline{FDE} is tangent at point D, and radius AO is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

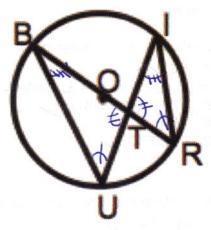
Which angle is Sam referring to?


- 1) ZAOB X
- 2) ∠BAC ×
- 3 LDCB /
- 4) ZFDBX right angle but because tangent digmeter.

14. In circle O shown below, \overline{AE} is a diameter, \overline{SB} is a tangent, and chord \overline{AR} and \overline{RE} are drawn.

Which of the following statements is true?

- 1) $\angle EAR \cong \angle RAB \times$ 2) $\angle REA \cong \angle SAE \times$ 3) $\angle SAR \cong \angle BAE \times$ 4) $\angle ERA \cong \angle BAE \times$



15. In circle O shown below, \overline{BR} is a diameter and chords \overline{BU} , \overline{IU} , and \overline{IR} are drawn.

Which of the following statements is not true?

- 1) ∠BUI \(∠BRI \) SAMLARC 3) ∠UBT \(∠BRI \)
- 2) \(\alpha ITR \approx \approx BTU \sqrt{vertical} \quad 4) \(\alpha RBU \approx \alpha RIU \sqrt{} angles

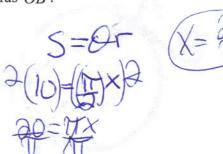
Samearc

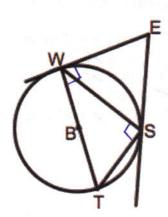
16. In circle O shown below, \overline{GM} is a diameter and chords \overline{EM} , \overline{OG} , \overline{EG} and \overline{EO} are drawn.

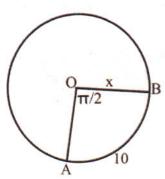
Which of the following statements is *not* true?

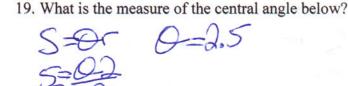
- Which of the following statements is not true?

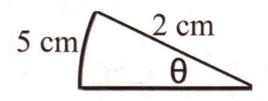
 1) $\angle MEO \cong \angle OGM \vee Same arc$ 3) $\triangle MGR \cong \triangle EOR \times Constant$
- 2) ∠GRM = ∠ORE/vertical 4) ∠GEM is a right angle / inscribed

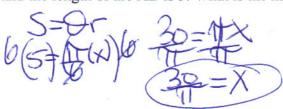


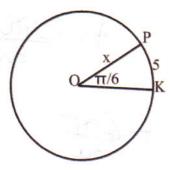



17. In circle B shown below, \overline{TW} is a diameter, tangents \overline{EW} and \overline{ES} are drawn and chords \overline{WS} and \overline{TS} are drawn.

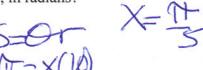

Which of the following statements is not true?

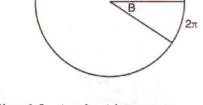

- 1) LESW = LWTS same are > 3) LEWS = LESW same are v
- 2) $\angle WST \cong \angle EWT \checkmark \checkmark \checkmark \angle TWS \cong \angle STW \checkmark \checkmark$ inscribed to diameter/tangent-diameter
- 18. In circle O, the measure of central angle AOB is $\frac{\pi}{2}$ radians and the length of arc AB is 10 cm. What is the measure of radius OB?





20. In circle O, the measure of central angle AOB is $\frac{\pi}{6}$ radians and the length of arc AB is 5. What is the measure of radius \overline{OP} ?

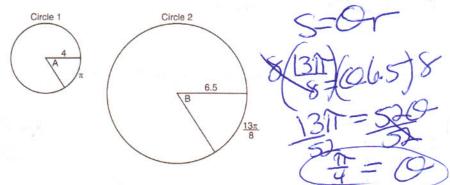




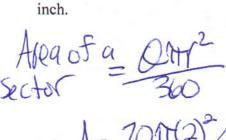
21. In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π .

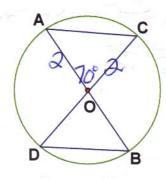
What is the measure of angle B, in radians?

- 1) $10 + 2\pi$
- 2) 20π
- $\frac{3}{5}$
- 4) 5



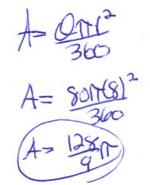
10

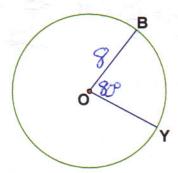

22. In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π , and angle B intercepts an arc of length $\frac{13\pi}{8}$.


5=0r 1=04 4=0

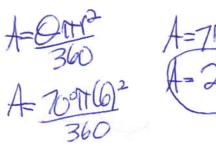
Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

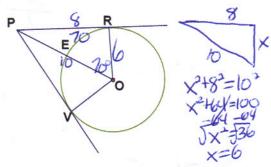
We have the same radian measure. State whether Dominic is correct or not. Explain why.

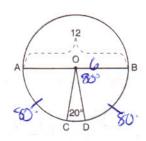




A= 7017(2)/

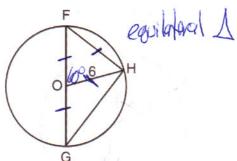

24. In circle O, if \angle BOY = 80° and \overline{BO} = 8 cm, find the area of sector BOY in terms of π .


23. In circle O, $m \angle AOC = 70$ and $\overline{AO} = 2$ in. Find the area of sector COA to the nearest square


25. Given that circle O has tangents \overline{PR} and \overline{PV} , if $\overline{mER} = 70$, $\overline{PO} = 10$ cm, and $\overline{PR} = 8$ cm find the area of sector ROE to the nearest tenth of a cm.

26. In the diagram below of circle O, diameter \overline{AB} and radii \overline{OC} and \overline{OD} are drawn. The length of \overline{AB} is 12 and the measure of $\angle COD$ is 20 degrees.

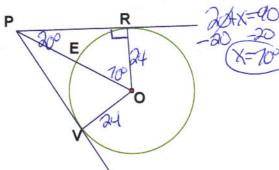
2x+20+x=180 2x+20=180 2x=160 2x=160 2x=80


If $AC \cong BD$, find the area of sector BOD in terms of π .

27. Triangle FGH is inscribed in circle O, the length of radius \overline{OH} is 6, and $\overline{FH} \cong \overline{OG}$.

What is the area of the sector formed by angle FOH?

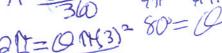
- 2π
- 2) $\frac{3}{2}\pi$
- 3) 6 m
- 4) 24π
- A= OM2

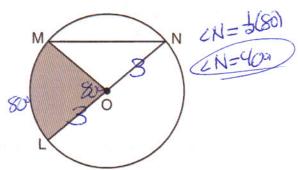


28. In circle O, tangents \overline{PR} and \overline{PV} are drawn. If $m \angle RPO = 20$ and $\overline{VO} = 24$ cm, find the area

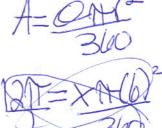
of sector ROE in terms of π .

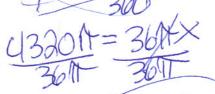
A= 7014041

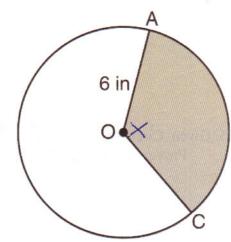

29. In the diagram below of circle O, the area of the shaded sector LOM is 2π cm².

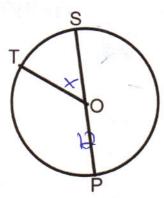

15 || = H

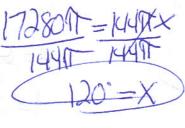
If the length of \overline{NL} is 6 cm, what is m $\angle N$?


- 1) 10°
- 2) 20°
- 3) 40°
- 4) 80°

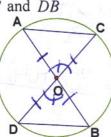

L is 6 cm, what is $m \ge N$? 1201 = 0.91 3/0 9/1 = 0.91



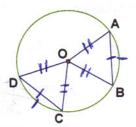

30. In the diagram below of circle O, the area of the shaded sector AOC is 12π in and the length of \overline{OA} is 6 inches. Determine and state $m\angle AOC$.



31. In the diagram below of circle O, the area of sector STO is 48π in^2 and the length of \overline{OP} is 12 inches. Determine and state $m \angle SOT$

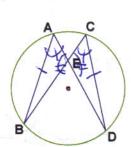


A=QNC² 360 481 = XN(12)² 360

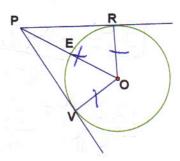


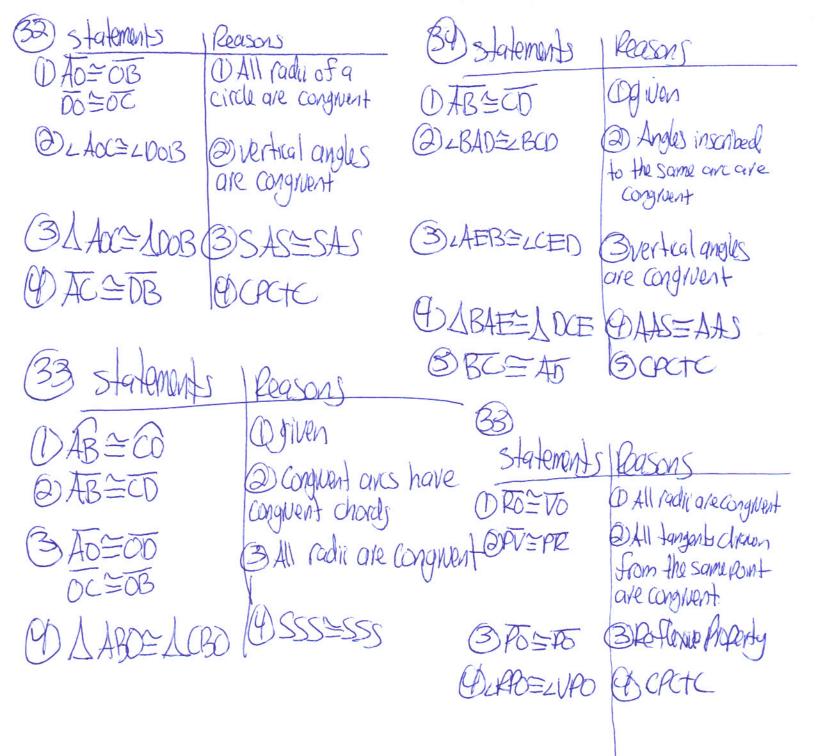
32. Given: Circle O with diameters \overline{AOB} and \overline{COD} , and chords \overline{AC} and \overline{DB}

Prove: $\overline{AC} \cong \overline{DB}$



33. Given: Circle O with AB ≈ CD
Prove: Δ ABO ≈ Δ CBO




34. Given: Chords \overline{AD} and \overline{BC} of circle O intersect at E, $\overline{AB} \cong \overline{CD}$

Prove: $\overline{BC} \cong \overline{AD}$

35. Given: Circle O, tangents \overline{PR} , \overline{PV} Prove: $\angle RPO \cong \angle VPO$

